
Mediascape provides
a Web-based media
space—an audio,
video, and
computing
environment that
supports distributed
groups. Using Web
standards and
protocols it supports
creating a software
infrastructure that
incorporates three
important design
principles:
integrability,
flexibility, and
privacy. The
Videoserver
component handles
digital video
communication. This
Web-based
environment offers
benefits to users and
developers.

I
n the mid-1980s Stults coined the term
“media space” at Xerox PARC.1 In order to
link two related laboratories located in Palo
Alto, California and Portland, Oregon,

Stults and his colleagues developed one of the first
systems that combined audio and video with com-
puters to support coordination, communication,
and collaboration among distributed groups. For
more than 10 years, research has explored the
social and technical issues raised by these envi-
ronments, including privacy concerns, long-term
use, and appliance and service design.2,3

Technically, a media space consists of a group
of offices and public spaces connected through an
audio/video network. Early media spaces used an
analog network. Standard cameras and monitors
connected to a computer-controlled crossbar
switch. A typical office “node” had a video cam-
era with a microphone, a monitor with speakers,
and a workstation to run the connection man-
agement software (Figure 1). Some recently devel-
oped media spaces rely on a digital audio/video
network such as Integrated Services Digital
Network (ISDN), local area network (LAN), or
asynchronous transfer mode (ATM).

Media spaces provide users with different kinds
of services, including

❚ Awareness view:4 a window displaying a series
of small digitized images of the different nodes,
grabbed at regular intervals.

❚ Background connection: a public source, instead
of having a black screen when there is no con-
nection (for example, a view of the campus or
a TV channel).

❚ Office share: a background connection used to
“share” an office with someone for a long peri-
od of time.

❚ Videophone: an audio and video link between
two nodes, used like a traditional phone call.

❚ Glance: a one-way video connection, lasting a
few seconds, to see if someone is there.

Different approaches ensure users’ privacy in
these augmented environments. Methods range
from a strict reciprocity rule to explicit negotia-
tion or user-defined rules, for access control and
notification.

Since 1993 my group at the Laboratory for
Computer Science (LRI) has worked in a media
space that connects our offices with analog
audio/video links. We have developed several soft-
ware prototypes to control this analog network,
from low-level switching to abstract services, col-
laborative session management with associated
shared applications, and access control and noti-
fication architectures.

This article focuses on the design of a media
space software infrastructure and user interface,
based on lessons learned from previous use of
these environments. I introduce three key princi-
ples for the success of a media space and show
how to use existing Web standards and protocols
to create software media space components con-
sistent with these principles. Finally, I present
Mediascape, our Web-based media space, and
Videoserver, a component for interpersonal and
interprocess digital video communication.

Learning from existing media spaces
Gaver’s analysis of the affordances of media

spaces shows that devices’ physical characteristics
modify the way users perceive and act in such
spaces.5 Following this approach and building on
previous experience using these environments, I
have identified three important principles for
media space design:

❚ Integrability. A media space is integrable to the
degree it supports existing practices and tools,
rather than imposing new ones on the user.

❚ Flexibility. A media space is flexible to the
degree its components can be repurposed to
create new uses, with little effort.

❚ Privacy. A media space supports privacy when

64 1070-986X/99/$10.00 © 1999 IEEE

Mediascape:
A Web-Based
Media Space

Nicolas Roussel
Université Paris-Sud

Media Spaces

users can easily understand, operate, and trust
mechanisms that control information avail-
able about them and how by other users can
access it.

Integrability
Bly et al.2 emphasized the importance of place-

ment and physical access to communication
devices (such as cameras and monitors) and their
integration into work practices. For example,
videoconference rooms require users to go into a
dedicated room, explicitly switching between per-
sonal and group activities. On the contrary, media
spaces tend to augment physical space by inte-
grating devices in the real world and making them
instantly and permanently accessible. This
approach eliminates the notion of a call, with a
beginning and an end, and fosters smooth transi-
tions between peripheral awareness (hearing and
seeing) and more focused communication (listen-
ing and looking). In this sense, media spaces are
related to ubiquitous computing and augmented
reality, two research directions that aim to inte-
grate computers into the real world.

Grudin (see Further Reading sidebar on the
next page) suggested integrating groupware fea-
tures with features that support individual activi-
ties and, if possible, adding them to already
successful applications. In traditional desktop
videoconferencing applications, which resemble
videoconference rooms, users switch between the
video application and other applications until
they find the optimal layout for multiple windows
on the screen. The telephone model implement-
ed by these applications requires explicit actions
for placing and accepting calls, making the inter-
face even more cumbersome. In contrast, using a
media space isn’t a primary activity in itself,
which is how they support spontaneous interac-
tions. However, this also makes media space inter-
faces difficult to design, because the frequency
and variety of uses is hardly compatible with a
task-specific application.

Several media space systems manage existing
applications or documents. However, they tend to
integrate them into their own framework, con-
trary to the idea of interacting with the media
space in the background of other activities. A
media space interface should integrate into the
software environment in the same way its physi-
cal devices do in the real world.

I think that the ubiquitous/augmented
approach can apply here. Interactions with the
media space should not go through a single work-

station and/or application. Instead, we should
integrate the digital media and the interface in any
existing document or application, whether indi-
vidual or collective. When designing the software
infrastructure of a media space, we must think in
terms of components to integrate into existing
practices, not in terms of new applications.

Flexibility
The affordances of analog media spaces depend

not only on the physical properties of the devices,
but also on how people can use them. As
Suchman pointed out,6 people commonly impro-
vise and repurpose their actions. Media space
hardware configurations can easily be tailored by
moving devices, adjusting them (for example, the
volume or the brightness), replacing them, or
combining them (adding a wide-angle lens or an
audio mixer). Again, this contrasts with dedicat-
ed videoconference rooms where users cannot
change complex setups.

Changing the duration (very short, intermit-
tent, or persistent) and the nature of media used
(small digitized image, video only, or audio/video)
permits creating a large variety of services to sup-
port different activities—from formal to informal
and from scheduled to spontaneous. Like hard-
ware configurations, media space software should
be tailorable. Instead of providing users with rigid,
predefined communication services, we should try
creating a “medium” that users can adapt to suit
their needs.

Bentley and Dourish7 showed that the notion
of medium, as opposed to mechanisms, arises
from systems openness and flexibility. I think that
open protocols and component architectures can
serve to implement a set of basic media space soft-
ware parts for developers and users. Each of these

65

A
p

ril-Jun
e 1999

Figure 1. Typical

configuration for an

analog media space

node.

parts would correspond to a well-defined system
requirement: connection management, access
control and notification, session management, or
digital media services. Users could then define
their own policies or patterns of use by configur-
ing, replacing, or combining these parts, like they
do with physical devices. In many existing sys-
tems, this flexibility tends to be accessible only to
developers or expert users. Care must be taken to
bring tailorability to the large majority of non-
programming users as well.

Privacy
Asymmetric connections such as awareness

views and glances are essential for providing
nonobtrusive awareness of the presence and activ-
ity of other media space users. Since these services
break the strict reciprocity rule of the real world,
mechanisms become necessary to ensure users’
privacy and, at the same time, keep the system as
open and accessible as possible.

Privacy in a media space is important because
of the highly dynamic nature of access control to
live media. Whereas specifying access rights on
documents usually proves simple to specify by
using read/write permissions granted by the
owner, access rights on live video or audio sources
proves more complex because of the multiple uses
they might serve. A short glance into an office, a
slowly updated view, or a live video feed corre-
spond to different intentions by the caller,
although they have the same basic requirement (a
video link). The identity of the person requesting
live media is also important: relatives, friends, col-
leagues, or strangers should not have the same
access to a user’s camera and microphone. Media
space software should provide users with notifica-
tion mechanisms that help determine the identi-
ty and intention of the remote person. It should
also give users simple mechanisms to control
available information about them, based on this
knowledge.

Another important issue is the extent to which
users trust the system. When users turn off or
unplug a physical device, they know the effects on
the device and the system as a whole, they can
easily check these effects, and they know they can
always go back to the previous state. Ideally, the
same should be true of software access control.

Notification and control mechanisms should
be simple so that people can trust them like phys-
ical mechanisms. Flexibility again offers the key
to a successful compromise between unobtrusive
spontaneous interactions and explicit access con-
trol. Users should not be restricted to binary
choices (that is, accept or refuse the service) but
should be able to describe complex behavior such
as request modification before execution.

Graphical or auditory notification should also
be available before, during, and after the execu-
tion of a request, so that the state of the system is
always known. Every modification of the access
policy should be easily checked and reversible. All
these elements contribute to Dourish’s notion of
selective accessibility.8

66

IE
EE

 M
ul

ti
M

ed
ia

Further Reading
For information on analog media spaces:

C. Cool et al., “Iterative Design of Video Communication Systems,” Proc. Conf. on

Computer-Supported Cooperative Work (CSCW 92), ACM Press, New York, 1992,

pp. 25-32.

W.W. Gaver et al., “Realizing a Video Environment: EuroPARC’s Rave System,”

Proc. Conf. on Human Factors in Computing Systems (CHI 92), ACM Press, New

York, 1992, pp. 27-35.

M.M. Mantei et al., “Experiences in the Use of a Media Space,” Proc. Conf. on

Human Factors in Computing Systems (CHI 91), ACM Press, New York, 1991,

pp. 203-208.

To explore digital media spaces:
J.C. Tang and M. Rua, “Montage: Providing Teleproximity for Distributed

Groups,” Proc. Conf. on Human Factors in Computing Systems (CHI 94), ACM

Press, New York, 1994 pp. 37-43.

H. Gajewska et al., “Argo: A System for Distributed Collaboration,” Proc. of

Multimedia 94, ACM Press, New York, 1994, pp. 433-440.

K. Watabe et al., “Distributed Multiparty Desktop Conferencing System:

Mermaid,” Proc. Conf. on Computer-Supported Cooperative Work (CSCW 90),

ACM Press, New York, 1990, pp. 27-38.

For augmented reality information:
W. Buxton, “Living in Augmented Reality: Ubiquitous Media and Reactive

Environments,” Video Mediated Communication, K. Finn, A. Sellen, and S.

Wilber, eds., Lawrence Erlbaum Associates, New Jersey, 1997.

M. Beaudouin-Lafon, “Beyond the Workstation, Media Spaces and Augmented

Reality,” People and Computers IX, Cambridge University Press, Cambridge,

England, 1994, pp. 9-18. Opening plenary session at HCI 94.

For more information on groupware architecture:
J. Grudin, “Groupware and Social Dynamics: Eight Challenges for Developers,”

Comm. ACM, Vol. 37, No. 1, Jan. 1994, pp. 92-105.

M. Roseman and S. Greenberg, “Building Flexible Groupware Through Open

Protocols,” Proc. ACM Conf. on Organizational Computing Systems, ACM Press,

New York, 1993, pp. 279-288.

O. Stiemerling, “Supporting Tailorability in Groupware Through Component

Architectures,” Proc. Workshop on Object Oriented Groupware Platforms (ECSCW

97), Available at http://www.trc.nl/events/ecscw97oogp/papers.htm, Sept.

1997 pp. 53-57.

G.Henri ter Hofte, “Working Apart Together: Foundations for Component

Groupware,” Telematica Institute Fundamental Research Series, Number 001,

Telematica Instituut, Enschede, The Netherlands, 1998, pp. 288.

Integrability, flexibility, and privacy using
HTTP and HTML

This section investigates the use of HTTP and
HTML standards (see the sidebar) to support
implementation of a media space software infra-
structure. It presents several features of HTTP that
make it suitable for connection management and
digital video streaming services. It also shows how
HTTP clients and HTML documents help create
interfaces to these services consistent with the
three principles just introduced.

Integrability using HTTP and HTML
HTTP is a request/response protocol between a

client and a server. It provides both parties with a
set of methods and status codes to express differ-
ent semantics. Client methods include retrieval
and posting of data (GET and POST), the two basic
actions performed when Web browsing. Status
codes allow servers to express the success of a
request (for example, 200 OK, followed by the
requested document, image, or sound), and also
authorization or payment requirements, redirec-
tion to another resource, and server or client
errors (including the famous 404 Not Found).
Another code, rarely used in existing applications,
indicates that the request succeeded but didn’t
generate any output for the client (204 No con-
tent). This feature of HTTP makes it possible to
issue commands that don’t retrieve data from the
server. This can control the switching of audio
and video connections, or the movement of a
remote camera. Therefore access to the media
space results from including links such as <a
href=”http://mediascape/connect_X_to_Y

”> X-Y in any HTML document.
When an HTTP server receives a GET request, it

usually sends back the corresponding resource and
then closes the connection. A mechanism known
as “server push” (see http://home.netscape.
com/assist/net_sites/pushpull.html) can take
advantage of a connection held open over multi-
ple responses, so the server can send more data
when available, every new piece of data replacing
the previous one. This mechanism makes it possi-
ble to send a series of images instead of just one.
With this feature, HTTP can transmit live video to
existing clients without modifying them or adding
a plug-in. This makes digital video sources avail-
able to nearly everyone connected to the Internet.

HTTP servers usually respond to each client
independently of previous requests by the same
client. A state management mechanism known as
cookies9 lets clients and servers place requests and

responses within a larger context. A cookie set by
the server in a response contains information that
the client should transmit back in subsequent
requests to that server. Generally, this information
is a unique ID that lets the server restore the clien-
t’s context.

This notion of context allows us to simplify the
naming of the media space’s resources (services).
Since the HTTP server can deduce the caller’s iden-
tity and location from the cookie, we can create a
unique resource /connectWith.Y instead of the
multiple resources /connect_X_to_Y mentioned
previously. This lets different users use the same
HTML document containing the appropriate URLs
as an interface to the media space services.

By implementing media space software as
HTTP servers or clients, we can make services
available to any existing Web-aware application.
By embedding HTML commands (that is, URLs
pointing to custom servers), we can also make
them accessible from any existing Web document.
These are two important steps towards the inte-
gration of the media space interface into existing
work environments.

Flexibility using HTTP and HTML
An HTTP URL has the following form:

http://host:port/path?querystring. The
optional query string specifies parameters that
control how the server handles the request. We
can use it to specify duration of a connection or
request an image with a given resolution by spec-
ifying a zoom factor (http://videoserver/
photo?zoom=4).

67

A
p

ril-Jun
e 1999

HTTP and HTML Defined
HTTP is an application-level protocol for trans-

ferring resources across the Internet. A resource
is “a network data object or service” (see
http://www.w3.org/Protocols) and is specified
by a URL. HTML is a simple data format used to
create hypertext documents (see http://www.
w3.org/TR/REC-html40/). Together, these stan-
dards contributed to create the Web: a globally
accessible and platform-independent hyperme-
dia information system. The Web has become
one of the most successful systems for commu-
nication between people. In many ways, it’s
becoming a central access point to applications
and services. More and more applications and
programming toolkits can use HTML for content
description or HTTP as a transfer protocol.

In addition to letting users specialize requests,
HTTP offers three types of intermediaries between
a server and a client for composing a
request/response chain:

❚ Proxies are forwarding agents. They receive
requests, rewrite all or part of the message, and
forward the reformatted request toward the
original server.

❚ Tunnels act as a relay point between two con-
nections without changing the messages.

❚ Gateways act as a layer above some other server,
translating the requests to the underlying
server’s protocol.

These intermediaries let developers customize the
system. They can compose them to create new ser-
vices, available like core services (for example,
adding a proxy to implement an access policy, or a
gateway to an ISDN videoconferencing system).
They can configure or replace each element at any
time without affecting the others. This lets devel-
opers share their experience by exchanging these
elements. They can also benefit from existing
clients and servers, and overcome possible incom-
patibilities by inserting intermediaries, for example,
creating a tunnel to pass through a security firewall.

The interface of EuroPARC’s Rave (Xerox
Research Centre Europe’s Ravenscroft Audio
Video Environment) media space used Buttons,10

a system based on end-user tailorable objects.
Some of this systems characteristics arise from the
way people create and edit HTML documents: dif-
ferent classes of users (worker, tinkerer, handy-
man, programmer) share their experience by
begging, borrowing, or stealing pieces of HTML.
The current architecture of the Web encourages
such forms of reuse, where anyone can view the
source of an HTML document and copy and paste
parts without understanding the details of how it
works. Current browsers’ tolerant use of HTML
tags support this reuse. HTML-based interfaces
support a tailoring culture based on existing skills
and work practices, rather than development of
new ones. Thus, we have interfaces easier to start,
learn, operate, and customize.

Using HTTP as a transfer and command proto-
col and HTML to describe the interface offers
some level of tailorability to both the developer
and the user. Although perhaps insufficient in the
long term, it allows quick creation of easily tested
and modified prototypes.

Privacy using HTTP and HTML
Despite what many people believe about the

Internet—reflected in the common catch-phrase
“On the Internet, nobody knows you’re a dog”—
some information about the client usually goes
along with an HTTP request, often without the
user’s consent or knowledge. Types of information
include the name of the client software (possibly
operating system name and version), types of
media or encoding it can handle, and the URL of
the resource that led to this server. Additional
information can be obtained through the network
interface: the remote host Internet address and
possibly its name, and sometimes the user login
name (through the Ident daemon11).

The client also might send back a cookie
obtained from a previous request. With all this
information, it’s possible to identify the person or
process that made the request, or at least know if
it comes from a known source. In addition, HTTP
provides several challenge-response authentica-
tion mechanisms that a server can use to chal-
lenge a client request. The client can then provide
authentication information.

These mechanisms can build access control
policies into every component, ranging from
open access to restricted communities based on IP
addresses, login names and passwords, or cookies.

Mediascape
Over the past five years, we have developed

Mediascape, an experimental media space to
explore and develop the approach described in
the previous sections. Mediascape consists of an
analog audio/video network connecting six work-
spaces (or nodes), several public spaces, a VCR,
and a workstation used to digitize analog images
(Figure 2).

Mediascape offers the following services to our
group:

❚ Register, to inform the system of the user’s
current location

❚ Glance, a bidirectional analog video only con-
nection lasting a few seconds

❚ Call, a bidirectional analog audio/video con-
nection, lasting an unknown duration (like
video phone)

❚ Authlevel, to choose between three levels of
accessibility (everything, glance only, or-
nothing)

68

IE
EE

 M
ul

ti
M

ed
ia

In addition to these services, available to local
people only, three other services are publicly avail-
able:

❚ PostIt, to allow other users to leave messages
on our computer screens

❚ Grab, to get a frame-grabbed still image from
one of our nodes

The current implementation of Mediascape con-
sists of two custom HTTP servers, one for analog
connection management and image digitizing, the
other for driving a computer-controlled video cam-
era. Digital images are captured on a per request
basis. Available in different sizes, from 80 × 60 to
640 × 480 pixels, they can be gamma corrected
(specifying these parameters with a query string).
PostIt message composition employs an HTML
form sent by the connection server and can contain
HTML code. Commands automatically added to
the message include the sender’s name and a snap-
shot, and can be used to call back (Figure 3).

Mediascape integrability
The connection server uses resource names

containing only the service and the callee names
(for example, /call.nicolas). People must
identify themselves by name and a location the
first time they use the media space. The server
stores their location and sets a cookie in the client
containing the user’s name, which accompanies
any subsequent request. Thus, when the server
receives a request for /call.nicolas, it also con-
tains a cookie such as NAME=paul, telling who
wants to call Nicolas. If the request does not con-
tain the cookie, the server returns a user identifi-
cation form to the client. Users can change their
location by issuing a register command (such as
/register.office228). The connection server
also permits requesting several resources at once:
/glance.paul/glance.michel.

An HTML document can contain references to
other resources in a number of ways, such as
images, hypertext anchors, or embedded objects.
We can use existing Web browsers to build the
media space interface by including the appropri-
ate code in an HTML document. For example,

❚ Include a snapshot grabbed upon retrieval of
the document
<img

src=”http://mediascape/

grab.nicolas”>

❚ Add links to allow people to call me or my
officemate
Call

<a href=”http://mediascape/

call.nicolas”>

me or

<a href=”http://mediascape/

call.paul”> Paul

to know where is office 228

❚ Combine the two previous examples to include
a snapshot that people can click on to call me
<a href=”http://mediascape/

69

A
p

ril-Jun
e 1999

Analog audio/video switch

Public nodes
Window
camera

VCR

Serial
line

SwC

Node CNode BNode A
LAN

Analog audio-video
 connection
Digital data
 network (LAN)
Serial line
Digital video
 interface

Figure 2. Mediascape hardware configuration. For simplicity, it shows only

three nodes and doesn’t include audio equipment. Node A is an analog node

with the camera and monitor connected to the switch. Node B, a digital node,

uses a digital camera and displays video on the computer screen. It also sends

and receives analog video through a video digitizing board. Node C is an analog

node where the workstation can control the orientation and zoom of the

camera through a serial line. The public nodes consist of a window camera and

a VCR. SwC marks the workstation that controls the switch through a serial

line. It runs the connection server used by other nodes to establish connections.

Figure 3. PostIt sample.

call.nicolas”>

<img src=”http://mediascape/

grab.nicolas”>

❚ Add JavaScript code to a text link that will exe-
cute a glance when the mouse passes over it
<a href=”http://www-ihm.lri.fr/”

onMouseOver=’window.location=

“http://mediascape/glance.nicolas”’

> N. Roussel

❚ Add a link to compose a PostIt for Paul

Note for Paul

❚ Add a command that executes several glances
in sequence
<embedsrc=”http://mediascape/

glance.michel/glance.stephane/

glance.patrick/glance.paul”>

The default interface to Mediascape is an
HTML document that displays still images of the
users (Figure 4). The server alters these images to
reflect users’ accessibility. Three icons represent
door states, as in Cavecat (Computer Audio Video
Enhanced Collaboration and Telepresence,
University of Toronto). Each door state (open,
ajar, or closed) corresponds to an authorization
level (authlevel service) controlled by users. A user
can glance at others by moving the mouse over

their name or call them by clicking on the snap-
shot. Two other icons provide access to the PostIt
service and a mail gateway. The document also
contains metainformation that tells the browser
to reload after a few minutes to keep it up to date.
As explained previously, the use of cookies in the
connection server and the naming of resources
(for example, /call.nicolas instead of
/X.call.nicolas) allow everyone to use the
same document.

Mediascape flexibility for the user
Since Mediascape’s basic interface employs an

ordinary HTML document, users familiar with
HTML authoring can save a copy and modify it to
create their own personal interface. Users could,
for example, select a subset of users, remove icons
to save screen space, or add icons that allow pan-
ning, tilting, and zooming with the remote cam-
era. This type of adaptation—described as surface
customization of the interface7—lets users choose
between a number of predefined options, deter-
mined by the capabilities of HTML and other
related languages such as JavaScript or Virtual
Reality Markup Language (VRML).

So far, we have seen dedicated HTML docu-
ments used to interface our media space.
However, HTML code requesting Mediascape
resources can also be added to existing docu-
ments. When collaborating with others on a pro-
ject, people can add snapshots and Mediascape
commands to the project description. This allows
any project member to know who is around and
make connections.

Here the users define the notion of group,
which relates to a particular activity, without hav-
ing to explicitly declare it to the system. This
assists coordination: in a co-authoring situation,
the authors can include a connect command in
the document (Figure 5). Each time one author
reads or works on the document, the connection
with the other author is automatically established.
As an increasing number of e-mail applications
understand HTML and HTTP, media space com-
mands can be included in a message and execut-
ed when the receiver reads it, again providing
implicit coordination between users.

Mediascape flexibility for the developer
To access media space services, end users can

employ HTML to create dedicated documents or
modify existing ones. This approach lets us quickly
prototype high-level services and share experiences
by cutting and pasting HTML code or exchanging

70

IE
EE

 M
ul

ti
M

ed
ia

Figure 4. Basic interface

to Mediascape.

Conversy has closed his

door, while Roussel’s is

ajar. The two rightmost

icons give access to

public nodes (a VCR

and a digital video

source).

files and e-mails. Browsers’ capabilities and the
description languages they use limit this document-
centric approach. In some cases, we may want to
use complex data and input/output techniques—
for example, touchpad, sound, or shaped win-
dows—not available in HTML browsers. We may
also want to control the media space from within
other existing applications, such as a shared editor.

We have developed a series of applications
based on a set of APIs (application programming
interface) that communicate with Mediascape
servers in Tcl, Python, and C++. One such appli-
cation provides a lightweight interface to the
media space consisting only of a title bar that
reveals snapshots of various users when the cur-
sor passes over it (Figure 6). A single click on an
image glances at that user while a double click
asks for a videophone call. A pop-up menu lets
users monitor and change their access rights. This
example shows how a developer can benefit from
the openness of Mediascape to integrate existing
services into nonbrowser applications.

Mediascape privacy
The system logs all requests to Mediascape

services. Users can check these files to see if some-
one called in their absence. They can also use appli-
cations that monitor the log files and deliver
feedback when someone requests an analog con-
nection or an image from the Web. For example,
they could use nonspeech audio to differentiate
between callers.

For privacy, a request for a still image grabbed
by the video digitizer is treated like a glance,
because these requests usually come from distant
users who don’t have access to our analog
audio/video network. Whereas analog services are
based on a strict reciprocity rule (“I can see you if
you can see me”), image digitizing uses a relaxed
version of this relationship because remote users

can see us but we can’t see them. We use the infor-
mation gathered from the HTTP connection to
identify the caller and forward this information to
the callee. If someone repeatedly asks for images,
it’s usually easy to let them know we’re aware of
their presence by gesturing, showing a message on
a piece of paper, or sending an e-mail.

Videoserver
Two years ago, we started using digital video

links to support informal communication over the

71

Figure 5. Coordination

between co-authors

through a Mediascape-

aware document. Here,

we can see that both

authors are present at

the same time.

Figure 6. Lightweight

custom client for

Mediascape.

Internet between our offices and distant colleagues.
The Mediascape connection server could only dig-
itize images from one camera at a time, but most of
our workstations had a frame grabber and camera.
We decided to design and implement Videoserver,
a software component for both interpersonal and
interprocess digital video transmission.

The first Videoserver prototype was an exten-
sion of our Web server (a Common Gateway
Interface, or CGI, script). The current implementa-
tion is a custom HTTP server, which runs efficient-
ly on any of our SGI workstations. It encodes live
or prerecorded video as a series of JPEG images (also
known as Motion-JPEG or MJPEG) and sends them
using the server push protocol described
earlier.

Videoserver offers the following services:

❚ /photo captures a single live image;

❚ /video produces a series of live images; and

❚ /file/test sends a video file named “test” in
the directory from which Videoserver was
launched.

Videoserver integrability
Since most Web browsers can display a server-

pushed sequence in place of an ordinary image
without using a plug-in, Videoserver gives live
video access to a large number of users. The frame
rate depends on the available bandwidth. A typi-
cal 160 × 120 JPEG image is about 3 Kbytes and we
routinely get 10 to 15 frames per second, even over
long distances. A snapshot image or live and
recorded video can be included in place of any
image in an HTML document simply by using the
following types of links:

<img

src=”http://videoserver/photo”>

<img

src=”http://videoserver/video”>

<img src=”http://videoserver/file

/test”>

We have distributed Videoserver outside the
lab to obtain bidirectional connections with
friends and colleagues. We often use these long-
distance digital video links in conjunction with
third-party applications such as text chat or audio
broadcasting, or with regular phone calls. In addi-
tion to using Web browsers as video clients, we
have developed a C++ API that lets us display

images coming from Videoservers in custom
applications. One application consists of a win-
dow containing only the video stream, which
users can resize to zoom in or out. Another appli-
cation lets us broadcast the digital images on our
analog video network, making remote people
accessible on the TV monitors of our media space
nodes, like local users.

Videoserver flexibility
Clients can use a query string to specify the

compression ratio and zoom factor of live images.
These two parameters let clients adapt their
requests to the available bandwidth by reducing
the resolution or augmenting the compression
ratio. For video, two extra parameters specify the
number of images requested and the time to wait
between two subsequent images. The former can
help create a glance, the latter can help create
awareness views updated at a slow rate.

More sophisticated HTML code can be used. For
example, the following code uses JavaScript to
insert a snapshot that turns into live video when
the cursor moves over it and turns back to a snap-
shot when the the cursor leaves it:

<a href=”http://www-ihm.lri.fr/”

onMouseOver=

‘document.i1.src=

“http://videoserver/video”’

onMouseOut=

‘document.i1.src=

“http://videoserver/photo”’>

<img name=”i1”

src=”http://videoserver/photo”>

This code can help create an awareness view
from several Videoservers (Figure 7). This docu-
ment differs from traditional awareness views in
two ways. First, users can freely modify the set of
images, which is not restricted to a list of registered
people. Second, the JavaScript code allows two-
degree awareness by switching between still and
live images.

Videoserver privacy
For every request it receives, Videoserver

executes an external notifier program with argu-
ments indicating the name of the client’s
machine, possibly the sender’s login name, the
requested service, and the values of the query
string arguments. The notifier sends back the

72

IE
EE

 M
ul

ti
M

ed
ia

description of the service to execute, which can
differ from the one the client requested. This sim-
ple mechanism lets people control the available
information about themselves and how other
users can access it.

The default notifier, a Unix shell script, allows
users to easily define different access policies. For
example, different sounds can reflect the request-
ed service or the address of the remote client,
implementing a form of caller ID. The notifier pro-
gram can also control image access. Since the noti-
fier can redefine the service to execute, it lets users
change resolution, quality, number of images, and
refresh rate. In particular, a very high compression
factor generates a highly degraded image that still
provides some useful information, such as the
number of people present. Another interesting use
of service redefinition for privacy is the ability to
send a prerecorded sequence instead of live video,
for example, a short clip showing the person is
absent or busy.

When the request doesn’t specify number of
images for live video, Videoserver limits the num-
ber to 5000 (that is, up to three minutes). This
ensures that constant monitoring cannot take
place without periodically asking permission. Thus,
when every service has an associated auditory noti-
fication, repeated requests quickly gain notice, as if
someone stood watching through the window
while leaving a finger on a doorbell.

Future work
One advantage of using digital video rather

than analog video is the ability to process images.
Previous work on media spaces shows that primi-
tive image processing can enhance some services.
Examples include remote camera control by local
movements,12 addition of recent activity represen-
tation to digitized images,13 and to support priva-
cy, substitution of a shadow for a person,14 or
eigen-space filtering.15

We’re investigating several techniques based on
simple image difference and partition to extend
Mediascape services. These extensions include con-
text capture—knowing whether a user is present or
absent, motion detection, and image segmentation
to support natural annotation and gesturing. We’re
implementing these applications as Videoserver
clients. Consequently, users are always notified and
can control access to their image in a single, uni-
fied way.

We’re also prototyping a shared graphical edi-
tor where live video images can be manipulated as
first class objects. When sharing a window with

another user, you can create a live video image of
that user as a new object on the drawing surface.
This object lets you gesture or control Mediascape
services. For example, it might let you make a call
when the mouse cursor nears a video object.

Today, Mediascape and Videoserver support
point-to-point connections between users. In ear-
lier work, we designed a more generic connection
and session management model16 in which users
with different sets of audiovisual resources can
freely create, enter, and leave sessions, bringing
documents or applications with them. We intend
to pursue our work on media spaces to combine
this model with the software infrastructure
described in this article, ultimately leading to a
toolkit for building media spaces.

Videoserver is available for download at http://
www-ihm.lri.fr/~roussel/Mediascape/. The current
implementation works only on SGI machines, but
should port easily to other platforms. MM

Acknowledgments
I would like to thank Michel Beaudouin-Lafon,

Wendy Mackay, the other members of our group,
and the anonymous reviewers for providing help-
ful comments on this work. I also want to
acknowledge the different people around the
world who use Videoserver and thank them for
their enthusiasm and collaboration.

This work is partially supported by CNET-
France Telecom under project number 961B222
(Telemedia).

73

A
p

ril-Jun
e 1999

Figure 7. HTML

document presenting

images from several

Videoservers around the

world.

References
1. R. Stults, “Media Space,” Technical Report, Xerox

PARC (Palo Alto Research Center)), Palo Alto, Calif.,

1986.

2. S.A. Bly, S.R. Harrison, and S. Irwin, “Mediaspaces:

Bringing People Together in a Video, Audio and

Computing Environment,” Comm. ACM, Vol. 36, No.

1, Jan. 1993, pp. 28-47.

3. W.E. Mackay, Media Spaces: Environments for Informal

Multimedia Interaction, M. Beaudouin-Lafon, ed.,

Computer-Supported Cooperative Work, Trends in

Software Series, John Wiley & Sons Ltd, Chichester,

England, 1999.

4. P. Dourish and S. Bly, “Portholes: Supporting

Awareness in a Distributed Work Group,” Proc. Conf.

on Human Factors in Computing Systems (CHI 92),

ACM Press, New York, 1992, pp. 541-547.

5. W.W. Gaver, “The Affordances of Media Spaces for

Collaboration,” Proc. Conf. on Computer-Supported

Cooperative Work (CSCW 92), ACM Press, New York,

1992, pp. 17-24.

6. L. Suchman, “Office Procedures as Practical Action:

Models of Work and System Design,” ACM Trans. on

Office Information Systems, Vol. 1, 1983, pp. 320-328.

7. R. Bentley and P. Dourish, “Medium versus

Mechanism: Supporting Collaboration Through

Customization,” Proc. European Conf. on Computer-

Supported Cooperative Work (ECSCW 95), Kluwer

Academic, Dordrecht, The Netherlands, 1995, pp.

133-148.

8. P. Dourish, “Culture and Control in a Media Space,”

G. De Michelis, C. Simone, and K. Schmidt, eds., Proc.

European Conf. on Computer-Supported Cooperative

Work (ECSCW 93), Kluwer Academic, Dordrecht, The

Netherlands, 1993, pp. 335-341.
9. D. Kristol and L. Montulli, “HTTP State Management

Mechanism,” Proposed Standard, RFC 2109, available

at http://www.ietf.org/rfc/rfc2109.txt, IETF Network

Working Group, 1997.

10.A. Maclean et al., “User Tailorable Systems: Pressing

the Issues with Buttons,” Proc. Conf. on Human Factors

in Computing Systems (CHI 90), ACM Press, New York,

1990, pp. 175-182.

11.M. St Johns, “Authentication Server,” RFC 931, IETF

Network Working Group, 1985.

12.W.W. Gaver, G. Smets, and K. Overbeeke, “A Virtual

Window On Media Space,” Proc. Conf. on Human

Factors in Computing Systems (CHI 95), ACM Press,

New York, 1995, pp. 257-264.

13.A. Lee, A. Girgensohn, and K. Schlueter, “NYNEX

Portholes: Initial User Reactions and Redesign

Implications,” Proc. GROUP 97, ACM Press, New York,

1997, pp. 385-394.

14.S. E. Hudson and I. Smith, “Techniques for

Addressing Fundamental Privacy and Disruption

Tradeoffs in Awareness Support Systems,” Proc. Conf.

on Computer-Supported Cooperative Work (CSCW 96),

ACM Press, New York, 1996. pp. 248-257.

15. J. Coutaz et al., “Early Experience with the

Mediaspace CoMedi,” IFIP Working Conf. on

Engineering for Human-Computer Interaction (EHCI 98),

available at

ftp://ftp.imag.fr/imag/IIHM/ENGLISH/publications/1

998/EHCI98_CoMedi.pdf, 1998.

16.N. Roussel, “Beyond the Media Space: A Model for

Mediated Collaboration,” Proceedings of IHM 97 (in

French), Futuroscope, Cépadués, Toulouse, France,

1997.

Nicolas Roussel is a PhD student in

computer science at the Université

Paris-Sud. His research concerns the

design of environments to support

remote communication, coordina-

tion, and collaboration. He is cur-

rently exploring video as a first-class object in user

interfaces and web-based media spaces.

Readers may contact Roussel at the Université Paris-

Sud, Laboratory for Computer Science (LRI), UMR 8623

CNRS, Bat. 490, 91405 Orsay Cedex, France, e-mail

roussel@lri.fr.

74

IE
EE

 M
ul

ti
M

ed
ia

