
Ametista: a mini-toolkit for exploring
new window management techniques

Nicolas Roussel
Laboratoire de Recherche en Informatique (LRI) & INRIA Futurs*

Bât 490, Université Paris-Sud
91405 Orsay Cedex, France

+33 1 69 15 66 23
roussel@lri.fr

ABSTRACT
Although the HCI research community has contributed a
number of metaphors, interaction techniques and layout
algorithms to improve window management tasks, most of
these ended as prototypes and only a few were implemented
in real window managers. In this paper, we present
Ametista, a mini-toolkit designed to facilitate the
exploration of new window management techniques using
both low-fidelity prototyping and a high-fidelity approach
based on X Window application redirection.

Keywords
Window management, graphical interaction, prototyping,
application redirection, OpenGL, X Window system, VNC

INTRODUCTION
In [16], Myers defines a window manager as “a software
package that helps the user monitor and control different
contexts by separating them physically onto different parts
of one or more display screens”. He adds: “Before window
managers, people had to remember their various activities
and how to switch back and forth”. Twenty years after the
general adoption of the desktop metaphor [12] and
overlapping windows [5], the growing range of activities
supported by interactive computer applications has brought
us back to the point where it is again difficult to remember
these activities and organize them.

Over the past few years, a number of novel metaphors,
interaction techniques or layout algorithms have been
proposed to extend or replace the desktop metaphor such as
the pile metaphor [14], elastic windows [13], tabbed,
rotated and peeled back windows [2] or constraint-based
layout [1]. However, most of these proposals were never
implemented in a 'real' window manager. Piles , for
example, were prototyped with Macromind Director; elastic
windows were implemented within custom applications
and rotated and peeled back windows were prototyped in
Tcl/Tk.

With the advent of hardware-accelerated graphics, the
graphics libraries available to application developers have
tremendously improved in recent years. Performance of
graphics hardware is increasing faster than Moore's law,
supporting more and more advanced graphics functions.
The Direct3D and OpenGL libraries, for example, natively
support arbitrary 3D transformations, double buffering, Z-
buffering, alpha blending, texture mapping and material
lighting. As illustrated by [3], all these graphics functions
make it possible to efficiently implement advanced
graphical interaction techniques such as toolglasses and
magic lenses [4] or zoomable interfaces [18].

By contrast, the graphical libraries used for window
management have not followed this trend, making it
difficult or impossible to use texture mapping, alpha
blending or arbitrary geometric transformations at the level
of windows. Until recently, the three most popular
windowing systems were still based on graphics libraries
designed in the 1980s: GDI for Microsoft Windows,
QuickDraw for Apple Mac OS and the Xlib for the X
Window system. The graphics models associated to these
libraries were relatively simple. In particular, the color of
each pixel on the screen was determined by a single
application through a few logical operations (e.g. and, or,
xor) applied on elementary 2D primitives. The main reason
why these models were so simple is that the hardware
available when they were designed was barely powerful
enough for them. It actually took several years before GDI,
QuickDraw or X server implementations could take
advantage of hardware acceleration provided by consumer-
level graphics hardware.

We believe that the large difference between the graphics
models available to applications and window managers is
one of the reasons why many innovative graphical
interaction techniques were never taken to the point where
they can be used in a real window management context.
To address this problem, we introduce Ametista, a mini-

* projet In Situ, Pôle Commun de Recherche en
Informatique du plateau de Saclay, CNRS, Ecole
Polytechnique, INRIA, Université Paris-Sud

toolkit specifically designed for HCI researchers who want
to explore new window management techniques.

RELATED WORK
In this section, we briefly describe the current state of the
rendering and windowing systems of Apple Mac OS and
Microsoft Windows as well as the X Window system. We
also describe several research projects related to the
exploration of new window management techniques in a
real-use context.

Quartz Compositor
The windowing system of Apple Mac OS X is based on
three different libraries: Quartz for 2D graphics, OpenGL
for 3D graphics and QuickTime for dynamic media (e.g.
animated graphics and video). A fourth component, the
Quartz Compositor, is responsible for the composition and
display of graphics rendered with these three libraries.

Quartz offers high-quality screen rendering and printing. It
is based on the Portable Document Format (PDF) graphics
model and features a number of advanced 2D graphics
capabilities such as spline-based curves, text rotation,
transparency and anti-aliased drawing. The move from the
old QuickDraw graphics model to this new one allowed
significant visual changes in the user interface of Mac OS.
Semi-transparent menus and controls, drop shadows or
“fade away” effects that were once limited to a few
applications are now available to all through the standard
Mac OS graphical user interface toolkit.

The Quartz Compositor is based on the idea that the
window system can be considered as a digital image
compositor [11]: Quartz, OpenGL and QuickTime graphics
are rendered into off-screen buffers that are then used as
textures to create the actual on-screen display. As a matter
of fact, since Mac OS X v10.2, the Compositor is just
another OpenGL application. As such, it can take advantage
of hardware-accelerated graphics functions to transform
windows in real-time before composing them. Examples of
transformations include alpha blending, color fading or
geometric transformations, as the scale and genie effects
shown when windows are minimized.

The introduction of Quartz and the Quartz Compositor in
the graphics and windowing systems of Mac OS illustrates
the potential uses of richer graphical models for supporting
new graphical interaction techniques and therefore, new
window management techniques. However, the windowing
system of Mac OS is tightly coupled with the operating
system, which makes it difficult - if not impossible - to
access and modify. Although the image compositing
approach coupled with hardware-accelerated rendering seems
promising, the Quartz Compositor in its current state
cannot be used by HCI researchers to explore new window
management techniques.

The Task Gallery and Windows Longhorn
Microsoft’s Task Gallery [20, 24] uses a redirection
mechanism for hosting existing Windows applications in a
3D workspace without changing or recompiling them. By
taking advantage of the powerful graphics model of
Direct3D, the authors created a 3D window manager that

better takes into account the human perception and spatial
cognition. This example clearly shows again how a rich
graphics model can significantly change the user's
interactions with applications and documents.

According to its Web site1, “the Task Gallery is not a
future version of the Windows operating system or user-
experience”. Yet, recent talks from Microsoft at the
Windows Hardware Engineering Conference clearly state
that the windowing system of the future versions of
Windows will be based on Direct3D and a compositing
process [15].

The Task Gallery is a stand-alone application. However, in
order to implement their redirection mechanism, the
authors had to modify Windows 2000. As they are not
allowed to release the patches corresponding to these
modifications, the Task Gallery and its redirection
mechanism remain out of reach for HCI researchers, like
Apple’s Quartz Compositor.

The X Window system, Render and RandR
A key feature of the X Window System [22] is that any
user-level application can act as a window manager. As a
consequence, a large number of window managers have
been developed for this system, providing a large range of
appearances and behaviors. Yet, all these window managers
are based on the original X graphics model and therefore,
they differ mostly in minor details such as window
decorations or keyboard shortcuts, and not in their
operation principle. Most windows remain rectangular and
opaque, very little use is made of the advanced features
of modern graphics hardware and the interaction techniques
and metaphors remain the same.

The mismatch between the original X Window rendering
system and modern interactive graphical applications is
very well described by K. Packard in [17]: “The two new
open source user interface environments, Gnome and KDE,
were hamstrung by the existing X rendering system. KDE
accepted the limitations of the environment and made the
best of them. Gnome replaced server-side rendering with
client-side rendering turning the X protocol into a simple
image transport system. The lack of hardware acceleration
and the destruction of reasonable remote application
performance demonstrated that this direction should be
supplanted with something providing a modicum of server-
side support.”

The X Rendering extension (Render) [17] and the Resize
and Rotate extension (RandR) [10] were designed to
address many of the shortcomings of the original X
rendering architecture. These two extensions provide image
compositing operators and glyph management and allow
applications to resize, rotate, reflect and change the refresh
rate of an X screen on the fly. XFree86 4.3.0 partially
implements the Render extension, providing anti-aliased
text drawing and image composition. Support for the
RandR extension has also been partially integrated,
providing support for resizing the root window at run-time.

1 http://research.microsoft.com/ui/TaskGallery/

The recent changes in the X Window rendering system
coupled with its openness and extensibility makes it more
and more usable to explore new graphical interaction
techniques. However, basic functions of the Render
extension such as affine transformation of images remain to
be implemented in existing X servers. Even then, the
graphics model of X will still be far simpler than the one
of OpenGL, for example. Therefore, OpenGL-based
applications will remain graphically richer than any
possible X window manager for some time.

VNC-based approaches to new workspace
interaction techniques
As we have seen, the graphics and windowing systems of
the three most popular platforms make it difficult if not
impossible for HCI researchers to take advantage of modern
graphics hardware to explore new graphical interaction
techniques for window management. In order to overcome
these difficulties, a number of researchers are using the
VNC remote display system [19] to bring existing
desktops and applications into innovative workspaces.

The Three-Dimensional Workspace Manager (3Dwm) [8]
includes a VNC viewer implementation that makes it
possible to integrate traditional graphical desktops into an
immersive 3D environment implemented with OpenGL. In
a similar way, Shiozawa et al. use VNC to combine several
individual desktops into a perspective layered collaborative
workspace [23]. Denoue et al. also used VNC to capture
window contents and display them as paper flyers posted
on a virtual board [7].

These examples show how VNC can help create innovative
workspace interactions without modifying the operating
system or the window system. However, in the first two
examples, the documents and applications are still
displayed and manipulated through the traditional desktop
interface, which is simply mapped as a whole inside a new
environment. The third example is more interesting
regarding window management techniques, although
individual windows are captured at regular intervals
through a polling mechanism, which, as the authors admit,
is not responsive enough to content changes.

GENERAL OVERVIEW OF AMETISTA
Ametista is a mini-toolkit designed to facilitate the
exploration of new window management techniques. It
supports low-fidelity prototyping, similar to the Director or
Tcl/Tk prototypes described in [14] and [2], as well as
high-fidelity prototyping using real applications, as in [20].

The current implementation of Ametista supports three
types of windows:

• pseudo-windows that are randomly-colored
rectangles;

• placeholders that display a fixed image or a video
stream;

• live windows of X Window applications.

Pseudo-windows can be used for low-fidelity prototyping
in the early stages of the exploration of a new window
management technique. Placeholders can help getting a

better idea of the envisioned technique by displaying
snapshots or movies of real applications. Finally, live X
windows can be used for high-fidelity prototyping and
evaluation of the technique. The three kinds of windows
can be freely mixed, as shown in Figure 1.

Figure 1: The three window classes of Ametista: a pseudo-
window (top-left), a placeholder showing a JPEG image
(bottom-left) and two live X Window applications (xclock
and the Galeon Web browser).

Ametista uses OpenGL to display windows. As we
explained in the previous section, this library offers a rich
graphics model well adapted to the exploration of new
window management techniques. Alpha blending, for
example, makes it easy to create translucent objects and
shadows. Scaling, rotation and translation can also be used
with a perspective projection to position windows in 21/2D
or 3D, as illustrated by Figures 2 and 3.

Figure 2: Combining 2D transformations, shadows and
transparency.

Figure 3: Arranging windows in 3D space.

Ametista makes an extensive use of texture mapping.
Textures are used to display fixed images and video
streams in placeholders as well as the content of X
windows. They also make it possible to transform the
window shapes in real-time. Figure 4 shows two examples
of such transformations: a peeled back window (Galeon), as
described in [2], and two windows cropped to circular
shapes (xclock and a placeholder showing a JPEG picture).

Figure 4: Examples of window shape transformations
using texture mapping.

IMPLEMENTATION DETAILS
Ametista is implemented in C++ and uses the videoSpace
toolkit [21], OpenGL and VNC. The Ametista software
alone consists of about 2500 lines of code. The three
window classes described in the previous section (pseudo-
window, placeholder and live X window) each correspond
to a C++ class that derives from AbstractWindow. This
class gives access to the content of the window (color or
texture) as well as geometry information for mapping
screen coordinates to window coordinates.

Each window objec t h a s a n associated
AbstractWindowRenderer object. Developers will typically
derive this class to redefine methods such as pointerEvent

or keyEvent to manage mouse and keyboard events that
occur in the window or display to redisplay it when the
content has changed. Several renderer classes have been
implemented to experiment with transparency, shadows or
interactive animations such as the peeling-back effect.

In addition to the implementation of the three window
classes and a set of renderers, Ametista also provides the
skeleton of a generic window manager that can be
customized to implement specific layout and interaction
techniques.

X Window application display redirection
We use an approach similar to the redirection mechanism of
[24] to make X Window applications available in Ametista.
Our approach is based on the X Window version of the
VNC remote display system.

VNC consists of two user-level applications: a server that
generates the display, and a viewer that draws the display
on a screen, receives mouse and keyboard events and
forwards them to the server. XVNC, the VNC server
implementation for X Window, is a slightly modified but
fully functional X server. This server renders applications
off-screen, making the desktop image available to VNC
viewers (Figure 5), and forwards mouse and keyboard
events to the appropriate applications.

Figure 5: Standard XVNC remote display operation. Note
that the window manager (wm) is not part of the VNC
system.

The videoSpace toolkit implements the viewer side of
VNC as an image source: new desktop images become
available from this source whenever display updates are
received from the VNC server. This provides Ametista with
a real-time stream of images of the X Window desktop2.
Note that, as opposed to [7], desktop images are pushed by
the VNC server to Ametista and not pulled at regular time
intervals, which ensures a good response time to
application changes.

In order to extract the images of individual applications
from desktop images, Ametista also implements the
window manager used by the XVNC server. This window

2 a previous version of Ametista was called

VideoWorkspace to reflect the fact that the VNC desktop
is seen as a video stream by our compositing process

manager simply tiles the windows next to each other so
they do not overlap (Figure 6).

Figure 6: Sample tiled layout of an XVNC desktop
managed by Ametista.

Ametista uses the XVNC desktop image as a texture.
Whenever it is notified that part of this image has changed,
it updates the texture and notifies the corresponding
window objects. The display method of the renderers
associated to these objects uses the size and position
communicated by the window manager to set the
appropriate texture coordinates. In order to reduce memory
usage and achieve better performance, Ametista uses several
OpenGL extensions to handle non-power of two textures
and to avoid unnecessary memory copies between image
data and textures.

Figure 7 summarizes our output redirection mechanism.
Note that this approach differs from 3Dwm or the
perspective layered workspace from [23], in that Ametista
is able to extract images of individual applications and not
images of the desktop as a whole. The same effect could be
obtained without VNC. For example, we could modify an
existing X server, as described in [9], or use a more
platform-specific technique.

Figure 7: Output redirection of X Window applications
using Ametista (VW).

Input handling
Ametista uses OpenGL selection mode and picking to
assign the keyboard focus to the window under the mouse.
Keyboard and mouse events can be handled locally by the
Ametista application, e.g. to implement window

management operations such as moving a window. They
can also be forwarded to the proper X Window application,
in which case the pointer coordinates are transformed into
the local window coordinates system.

Window creation and destruction
Ametista can read commands from the standard input to
create pseudo-windows and placeholders and to connect to
XVNC servers. Each command specifies a rendering class,
a window class and some additional parameters such as
width, height and title for pseudo-windows or a URL for
XVNC servers. As an example, the following commands
were executed to set up the windows shown in Figure 1:

decorated PseudoWindow 400 300 Pseudo-window
decorated PlaceHolder demo/amethyste.jpg Placeholder
decorated XvncDesktop vnc://127.0.0.1:1

When the connection with an XVNC server is first
established, all windows existing on this server are
automatically added to Ametista’s workspace. X
applications can then create and destroy windows at will.

A video-enabled application
The videoSpace toolkit provides Ametista with a variety of
image sources to be displayed on placeholders. These
sources include JPEG and PNG images, QuickTime and
MPEG movies but also live video input (e.g. a webcam) as
well as networked image sources. As videoSpace image
sources are described by URLs, they can be specified at
run-time with PlaceHolder commands such as the one
above.

VideoSpace also provides several image sinks that make it
possible to record Ametista’s display as a QuickTime or
MPEG file or to send it over the network to another
application. We already took advantage of this to create
short video clips demonstrating Ametista. But most
importantly, we anticipate that this feature will be
especially interesting for observing users during evaluations
and keeping records of these evaluations.

Performance evaluation
We conducted a preliminary evaluation of the performance
of Ametista with the images presented in this article. The
software ran on a Fujitsu/Siemens PC with a 1.5 GHz
Pentium IV and an AGP NVidia GeForce2 MX 400. The
operating system was Linux Mandrake 9.0. The screen size
was 1280x1024 and the XVNC desktop size was
1280x1024. Ametista achieved full-screen display rates of
up to 65 frames per second. Display rates of more than 30
frames per second were also achieved on a 667 MHz Apple
PowerBook G4 with an AGP ATI Radeon Mobility.

DISCUSSION
The work presented in this paper relies on the assumption
that richer graphics models will allow significant changes
in window management techniques in the near future. But
what kinds of changes do we expect? In this section, we
take several basic features of modern graphics libraries such
as OpenGL or Direct3D and explain how we think these
features will help us create innovative graphical
presentations and interaction techniques for window
management.

The third dimension
3D user interfaces are very controversial. On one hand, user
studies like [20] show that placing documents and
applications in 3D space helps users remember where they
are during later retrievals. Yet, other studies like [6] tell us
that performance deteriorates as the freedom to locate items
in the third dimension increases and that 3D interfaces can
be perceived as more cluttered and less efficient than 2D or
2D1/2. On a less academic perspective, endless discussions
about the potential benefits and disadvantages of 3D
interfaces (including window managers) are also regularly
posted on discussion forums3.

Most comments in these discussions are related to the
frequent navigation problems encountered in 3D interfaces
and the need for better input techniques. It is true that a 3D
drag-and-drop operation on a window might require a lot
more concentration and effort than its 2D equivalent.
However, specific devices such as isometric joysticks and
spaceballs or even better, bi-manual interaction techniques,
can help solve these problems.

Many other comments point out that reading, writing and
drawing cover a fair amount of our uses of computers and
are almost always associated to 2D surfaces. Some people
think this makes 3D interfaces inadequate for these tasks.
However, when dealing with physical objects, whether 2D
or 3D, we perceive them and manipulate them in a 3D
world. The same could be true for the digital world. The
interesting problem is to find the appropriate interaction
techniques and we believe that window management is a
good test case for these techniques as it is an unavoidable
task.

On a more pragmatic perspective, the third dimension
combined with the depth test offers a convenient way to
implement multi-layer graphical applications. Each layer
can be associated to a particular depth, which can reduce the
need for specific data structures. The activation of the depth
test allows to render objects in arbitrary order, pixels being
updated only if the current object is closer than the one
already displayed (if any). Ametista already uses this
approach to display overlapped windows, assigning a
different depth to each window.

Geometric transformations
Moving windows (translating them) has always been
possible since the adoption of the overlapping model. Scale
transformations have almost never been possible. Note that
the resizing of a window is usually not a scale
transformation since it changes the layout of the window
instead of just making the content bigger or smaller. The
closest things to scale transformations of windows are the
icons used in several systems that show a reduced version
of the original application display. Rotations of windows

3 check http://www.useit.com/alertbox/981115.html,

http://slashdot.org/article.pl?sid=99/11/03/0917216 or
http://nooface.com/search.pl?topic=visualui for some examples
of these discussions

have never been possible until the RandR extension of the
X Window system that allows to change the orientation of
the whole display.

Scale transformations have been used to create zoomable
interfaces for a while [18]. While scaling the whole
workspace might not be a good idea, we believe that
scaling individual windows will be much more interesting.
Translations of objects combined with a perspective view
allow to move away some objects, making them smaller,
and bring closer some others. We are currently using
Ametista to explore this kind of interactions with windows
(Figure 8).

Figure 8: Example of perspective view.

We anticipate that rotations might play an important role in
the future. In situations like Figure 8, viewpoint rotations
allow to explore the three dimensions in a continuous way.
As illustrated by Figure 2, rotations might also be used to
better differentiate windows. In that case, similar
orientations could be used to indicate that two windows are
related in some way (e.g. they belong to the same
application or they refer to the same document). Rotations
of individual objects also make it possible to create
interfaces for horizontal displays, which are particularly
interesting for single-display groupware situations [25].

Alpha blending
Alpha blending allows to easily create translucent objects.
As illustrated by Figure 2, we have started experimenting
with the use of translucency for window contents and
decorations. The least we can say after these initial tests is
that it is not clear what windows should be made
transparent, why and for how long. Obviously, the
interesting property of a translucent object is that one can
see through it. Thus, translucency should be valuable when
one wants to see something behind the current object of
interest. This suggests that translucency might be better
thought of as a time-limited interaction technique rather
than a timeless property of an object. This, in turn, might
explain why ten years after the publication of the first paper
describing them [4], toolglasses and magic lenses are still
the best examples of use of alpha blending in graphical
interfaces.

Alpha blending also poses a number of pragmatic
problems. Primitives drawn using it need to be drawn after
all opaque primitives are drawn. Moreover, unless the
translucent objects are sorted in back-to-front order, depth
buffer updates must be disabled, although depth buffer
compares should remain enabled. Maintaining this back-to-
front sorted list can be quite expensive if many geometric
transformations are applied on the objects.

Texture mapping, lighting and image processing
Figure 4 illustrates how texture mapping can be used to
transform window shapes. More complex transformations
could be easily implemented in Ametista. As an example,
one could create a window renderer that would apply a
fisheye deformation on the window’s content. One could
also implement a renderer that would display only a part of
the content that would have been selected interactively (the
circular crop shown in Figure 4 is computed
automatically).

The current implementation of Ametista does not make any
use of lighting. Yet, material lighting and shading could be
used, for example, to highlight the window having the
keyboard focus. Similarly, image processing techniques
could be used to render some windows out of focus to get a
sense of depth of field. Full screen antialiasing or motion
blur could also be implemented through these techniques.

The recent introduction of programmable shaders in
Direct3D and OpenGL has made visual quality of
interactive computer graphics take a quantum leap towards
realism. We anticipate that these shaders will help us create
new rendering transformations and filters for Ametista in
the future.

CONCLUSIONS AND FUTURE WORK
We have presented Ametista, a mini-toolkit for exploring
new window management techniques. We have described
how this toolkit supports both the low-fidelity prototyping
of these techniques using pseudo-windows and placeholders
as well as a high-fidelity approach based on X Window
application redirection. Preliminary results are encouraging:
we have been able to use Ametista to experiment with
several rendering styles and interaction techniques with
excellent performance.

Future work on Ametista includes a better tiling algorithm
for the XVNC window manager and more scripting
capabilities. We plan to use the toolkit to implement and
evaluate some of the layout algorithms, interaction
techniques and metaphors contributed by the HCI
community. Of course, we also plan to use it to explore
some of the directions we mentioned in the previous
section.

AVAILABILITY
Ametista and videoSpace are available in source code from

http://www.lri.fr/~roussel/software/

Several short videos of Ametista are also available from
http://www.lri.fr/~roussel/projects/ametista/

ACKNOWLEDGEMENTS
The author thanks Wendy Mackay, Michel Beaudouin-
Lafon, Olivier Beaudoux, Renaud Blanch and Stéphane
Conversy for providing helpful comments on an earlier
version of this document.

REFERENCES
1. G. Badros, J. Nichols, and A. Borning. Scwm - an

intelligent constraint-enabled window manager. In
proceedings of AAAI Spring Symposium on Smart
Graphics. IEEE Computer Society Press, March 2000.

2. M. Beaudouin-Lafon. Novel interaction techniques for
overlapping windows. In Proceedings of ACM
Symposium on User Interface Software and
Technology, UIST 2001, Orlando (USA), pages 153-
154. ACM Press, November 2001.

3 . M. Beaudouin-Lafon and H.M. Lassen. T h e
architecture and implementation of cpn2000, a post-
wimp graphical application. In Proceedings of ACM
Symposium on User Interface Software and
Technology, UIST 2000, San Diego (USA), pages 181-
190. ACM Press, November 2000.

4. E. Bier, M. Stone, K. Pier, W. Buxton, and T. De
Rose. Toolglass and magic lenses: the see-through
interface. In Proceedings of ACM SIGGRAPH 1993,
pages 73-80. ACM Press, 1993.

5. S.A. Bly and J.K. Rosenberg. A comparison of tiled
and overlapping windows. In Proceedings of ACM
CHI'86 Conference on Human Factors in Computing
Systems, pages 101-106. ACM Press, 1986.

6 . A. Cockburn and B. McKenzie. Evaluating the
effectiveness of spatial memory in 2d and 3d physical
and virtual environments. CHI letters, 4(1):203-210,
April 2002. Proceedings of ACM CHI 2002 Conference
on Human Factors in Computing Systems,
Minneapolis.

7. L. Denoue, L. Nelson, and E. Churchill. Attractive
windows: Dynamic windows for digital bulletin
boards. Conference companion, Proceedings of ACM
CHI 2003 Conference on Human Factors in Computing
Systems, to be published (2 pages).

8 . N. Elmqvist. 3Dwm: Three-Dimensional User
Interfaces Using Fast Constructive Solid Geometry.
Master's thesis, Chalmers University of Technology,
Göteborg, 2001.

9. S. Feiner, B. MacIntyre, M. Haupt, and E. Solomon.
Windows on the world: 2d windows for 3d augmented
reality. In Proceedings of ACM Symposium on User
Interface Software and Technology, UIST '93, Atlanta
(USA), pages 145-155. ACM Press, November 1993.

10. J. Gettys and K. Packard. The X Resize and Rotate
Extension - RandR. In proceedings of USENIX Annual
Technical Conference, FREENIX Track, pages 235-243.
USENIX association, 2001.

11. P. Graffagnino. Apple OpenGL and Quartz Extreme.
Presentation at SIGGRAPH 2002, OpenGL BOF.

12. J. Johnson, T.L. Roberts, W. Verplank, D.C. Smith,
C. Irby, M. Beard, and K. Mackey. The Xerox Star: a
retrospective. IEEE Computer, 22(9):11-29, September
1989.

13. E. Kandogan and B. Shneiderman. Elastic Windows:
evaluation of multi-window operations. In Proceedings
of ACM CHI'97 Conference on Human Factors in
Computing Systems, Atlanta, pages 250-257. ACM
Press, March 1997.

14. R. Mander, G. Salomon, and Y.-Y. Wong. A pile
metaphor for supporting casual organization of
in format ion . In Proceedings of ACM CHI'92
Conference on Human Factors in Computing Systems,
pages 627-634. ACM Press, 1992.

1 5 . C. McCartney. Windows Desktop Composition.
Presentation at WinHEC 2002, Windows Graphics
Architecture session.

16. B.A. Myers. A taxonomy of window manager user
interfaces. IEEE Computer Graphics and Applications,
8(5):65-84, sept/oct 1988.

1 7 . K. Packard. Design and Implementation of the X
Rendering Extension. In Proceedings of USENIX
Annual Technical Conference, FREENIX Track, pages
213-224. USENIX association, 2001.

18. K. Perlin and D. Fox. Pad: An alternative approach to
the computer interface. In Proc. of ACM SIGGRAPH
1993, pages 57-64. ACM Press, 1993.

19. T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A.
Hopper. Virtual Network Computing. IEEE Internet
Computing, 2(1):33-38, Jan-Feb 1998.

2 0 . G. Robertson, M. van Dantzich, D. Robbins, M.
Czerwinski, K. Hinckley, K. Risden, D. Thiel, and V.
Gorokhovsky. The Task Gallery: a 3D window
m a n a g e r . In Proceedings of ACM CHI 2000
Conference on Human Factors in Computing Systems,
pages 494-501. ACM Press, April 2000.

2 1 . N. Roussel. Exploring new uses of video with
v ideoSpace . In R. Little and L Nigay, editors,
Proceedings of EHCI'01, the 8th IFIP International
Conference on Engineering for Human-Computer
Interaction, volume 2254 of Lecture Notes in Computer
Science, pages 73-90. Springer, 2001.

22. R.W. Scheifler and J. Gettys. The X Window system.
ACM Transactions on Graphics, 5(2):79-109, 1986.

23. H. Shiozawa, K. Okada, and Y. Matsushita. Perspective
layered visualization of collaborative workspaces. In
Proceedings of the international ACM SIGGROUP
conference on supporting group work, pages 71-80.
ACM Press, November 1999.

24. M. van Dantzich, G. Robertson, and V. Ghorokhovsky.
Application Redirection: Host ing Windows
Applications in 3D . In Proceedings of NPIV99, the
workshop on New Paradigms on Information
Visualization and Manipulation, pages 87-91. ACM
Press, 1999.

2 5 . F. Vernier, N. Lesh, and C. Shen. Visualization
techniques for circular tabletop interfaces. In
Proceedings of AVI'2002, Trento, Italy, pages 257-263,
May 2002.

