
All you need is log

Nicolas Roussel
Projet In Situ

LRI & INRIA Futurs
Bât 490, Université Paris-Sud
91405 Orsay Cedex, France

roussel@lri.fr

Aurélien Tabard
Projet In Situ

LRI & INRIA Futurs
Bât 490, Université Paris-Sud
91405 Orsay Cedex, France

tabard@lri.fr

Catherine Letondal
Pôle Informatique

Institut Pasteur
28, rue du Docteur Roux

75724 Paris Cedex 15, France
letondal@pasteur.fr

ABSTRACT
Experiences in our Micromégas project have shown that a
detailed interaction log can be valuable to both users and
designers of interactive systems. In this paper, we describe
two different attempts at logging traces of Web activity, the
first by instrumenting a specific browser, Camino, and the
other by creating a cross-platform Firefox extension. We
briefly discuss some of the issues brought by these develop-
ments and suggest directions for future work.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces—Web-based interaction; K.6.2
[Management of Computing and Information Sys-
tems]: Installation Management—Performance and usage
measurement

General Terms
Measurement, Design, Human Factors, Standardization

Keywords
Web use, interaction log

1. LOG, LOG, LOG (INTRODUCTION)
The quantity and diversity of digital information that we

produce, receive and download on a daily basis is becoming
increasingly difficult to manage. The Micromégas1project
aims to develop methodologies and tools to better under-
stand how users manage their documents and applications
and to design new metaphors and interaction techniques
to facilitate these tasks. Recent advances in this project
motivated closer examination of the problem of automatic
capture of qualitative and quantitative information about
a users’ computing activity. As others have done in the
past (e.g. [6]), we have implemented a series of applications
to monitor and visualize window management, file manage-
ment and network-related activity [8, 3].

Initially, we implemented the monitoring applications to
generate detailed descriptions that would aid in understand-
ing user activities. Yet, it quickly became clear that the col-
lected information would also be useful to the users them-
selves, and to the software design community. In particular,
a detailed log of his interactions with a system could help

a user review previous work, return to a previous state and
re-execute complex commands or send them to another per-
son [9]. Providing computing systems with long term inter-
action memory could also make it easier for users to retrieve
a particular data or context by taking advantage of their
episodic memory [7].

The particular group of users we are working with is con-
stituted of biologists from Pasteur Institute who use the Web
on a daily basis for information retrieval and analysis. Typ-
ical tasks include retrieval of gene and protein sequences
from Web databases and analysis using Web application por-
tals. We identified a common difficulty: the pages providing
data infrequently contain links to the tools required for their
analysis, and traditional history and bookmark mechanisms
provide insufficient support for retrieval of previously used
tools or data sets. The problem in the biologist example
illustrates a class of problems relating to Web navigation
histories. As V. Bush states, the human mind operates by
association, connecting items into a web of trails [1], but
even modern navigation tools such as Web browsers take
little advantage of these trails.

The notion of detailed interaction log is poorly supported
by most existing applications. Lists of “recent items” are
often available, but they usually present only a few items
with little temporal context. Although some applications
allow undo or redo for recent operations on a particular
object (e.g. a document), very few remember these oper-
ations between sessions (e.g. after the document has been
closed and re-opened). Web browsers provide both short-
term and long-term history mechanisms through the back
and forward buttons, personalized lists (bookmarks or fa-
vorites) and a global history list. Yet, while revisitation is
the dominant Web activity and the back button is one of
the mostly used interface components, global history lists
remain rarely used [2, 11, 4].

The information that browsers store in their history file
is quite limited (Figure 1). In particular, knowing only the
last time (and possibly the first) a URI was visited makes it
impossible to find other URIs that could have been visited
at about the same time, earlier: if you frequently visit the
same Web page, knowing you reached a document you’re
looking for from that page a month ago won’t help you find
it. The so-called global history is in fact only a subset of
what we understand as the interaction log.

Our experiences in the Micromégas project have shown
that a detailed interaction log can be valuable to both users
and designers of interactive systems. Logging real users in

1http://insitu.lri.fr/micromegas/



URI title VisitCount LastVisitDate FirstVisitDate Referrer
Internet Explorer x x x x
Mozilla and derivatives x x x x x x
Opera x x x x
Safari x x x x

Figure 1: Data stored in the global history file of popular browsers

their particular work context, however, proved harder than
we anticipated. In the subsequent sections, we describe two
different attempts at logging traces of Web activity, the first
by instrumenting a specific browser, Camino, and the other
by creating a cross-platform Firefox extension. We will then
briefly discuss some of the issues brought by these develop-
ments and suggest directions for future work.

2. THERE’S NOTHING YOU CAN DO THAT
CAN’T BE DONE

Camino is a Web browser that embeds the Mozilla lay-
out engine2 in a native Mac OS X interface written in Co-
coa3. Our first attempt at logging a user’s Web activity
consisted in adding Objective-C code to selected functions
of this browser. There was no reason for choosing this one
against other browser, except that one of us was a little fa-
miliar with its compilation process. Our modifications use
Cocoa’s inter-process communication mechanisms to broad-
cast notifications to other interested applications. About
sixty lines of code added to four functions (three files) were
enough to generate seven types of notifications:

setActive and setInactive a document view, tab or win-
dow, acquires or looses the focus (e.g. when switching
between tabs or windows)

loadingCompleted and loadingFailed a view succeeded or
failed to load a new document (e.g. after activating a
link, typing a URI or opening a file)

downloadCompleted and downloadFailed a remote file was
successfully or unsuccessfully saved to the local disk
(e.g. when activating a “Save as” or “Download link”
command)

closed a document view is being closed

Applications that want to be notified simply need to sub-
scribe to fr.lri.insitu.micromegas.camino, which can be
done using only twenty lines of Python code, for example.
Figure 2 gives an example of the kind of information at-
tached to a loadingCompleted notification. Note that in
addition to a timestamp, the URI and the title of the docu-
ment that was just loaded, the application gets information
about the user, the process and the view. It also has infor-
mation about the function in the Camino source code that
generated the notification.

Instrumenting Camino was both simple and elegant. Patch-
ing its publicly-available code and keeping our version syn-
chronized with the CVS one was quite easy. Finding ob-
servation points inside the code was also relatively easy be-
cause of the Model-View-Controller design pattern followed

2http://www.mozilla.org/newlayout/
3http://developer.apple.com/cocoa/

fr.lri.insitu.micromegas.camino loadingCompleted
obsPoint: BrowserWrapper.mm/onLoadingCompleted
process: 670
timestamp.sec: 1139571047
timestamp.usec: 139838
title: LRI, projet In Situ
uri: http://insitu.lri.fr/
user.id: 501
user.login: roussel
user.name: Nicolas Roussel
view: 120828592

Figure 2: Sample notification received by a Camino
observer

by Cocoa. Keeping the added code as small as possible
(i.e. only use it to generate notifications) and having the
actual logging implemented in external applications allowed
to compare various ways to record data and later make use
of it. It makes it possible to implement the logging code in
any language using any toolkit we want. A more complex
notification service like D-BUS4 would even make it possible
to handle the notifications on a different machine. In a way,
as the song says, using this approach there’s nothing you can
do that can’t be done.

However, this approach has also disadvantages. One has
to compile a specific version of Camino and distribute it. Al-
though about half of our target users have Apple Comput-
ers, none of them are actually using this particular browser
(they use Safari, Firefox or Internet Explorer). This was
clearly a problem, since we wanted to observe users in their
“natural ecology”. Even if they had used Camino, replacing
the browser executable can sometimes be troublesome, as
incompatibilities arise between versions.

3. NOTHING YOU CAN SAY BUT YOU CAN
LEARN HOW TO PLAY THE GAME

Our first experience with Camino gave us hope that a sim-
ilar approach could be applied to another browser. We chose
Firefox, the latest cross-platform and extensible browser
from the Mozilla family. About half of the biologists we met
were using that browser on OS X, Windows or Linux. Fire-
fox has a built-in extension mechanism5 that allows to easily
create cross-platform add-ons that bring new functionalities
to the browser and can be downloaded and installed by users
in a few clicks. This time, we thus decided to create an ex-
tension rather than modify the browser’s source code.

Firefox’s user interface is written in XUL and JavaScript.
XUL is an XML-based user interface description language,
JavaScript is a cross-platform object-oriented scripting lan-

4http://www.freedesktop.org/Software/dbus
5http://developer.mozilla.org/en/docs/Extensions



guage. Building a Firefox extension consists in creating XUL
“overlays” to add or modify interface elements and attaching
JavaScript handlers to respond to specific events on these el-
ements. The extension programming interface also provides
RDF support for storing and retrieving data.

We are currently developing navtracer6, a Firefox exten-
sion designed to log the interactions between a user and his
browser. This extension registers various event handlers to
detect the opening or closing of tabs and windows, and the
acquiring or loss of focus. It also tracks document changes
and the relations between them. Event handlers append log
data to a plain text file stored in the user’s profile folder.
Timestamps are systematically added to every record. One
short-term goal for this extension is to provide enough data
to visualize the paths followed by a user. Another goal is
to evaluate the potential benefit of another extension we
developed that allows biologists to create contextual links
between web pages [10].

One problem we’re facing is that extensions can only react
to a predefined set of events occurring on interface compo-
nents. To our knowledge, there is no way to request some
code to be executed before or after a particular function of
the browser is called. As a consequence, to trace function
calls that have no associated XUL event, one needs to reg-
ister handlers for events that might precede or follow these
calls and use some clever heuristics. Failures are particu-
larly hard to detect. Windows, for example, have an onload
event handler, but no onloadfailed. To detect that the
user failed to open a document, one has to register low-level
handlers with all the components that might call the load-
ing function (e.g. the Go and Bookmarks menus; the history
or bookmarks sidebars; the bookmarks, location and search
toolbars) and, when one of these handlers triggers, check if
the window receives a load event.

In the end, although the navtracer extension is indeed
cross-platform and easily installed, developing it is a time-
consuming task. And learning how to play with JavaScript
and XUL can be a very frustrating experience...

4. LOG IS ALL YOU NEED (CONCLUSION)
Accounts of a system’s activity are much more valuable

if generated from within the system rather than imposed
or inferred from outside [5]. Finding the appropriate ob-
servation point and level of detail for describing the activ-
ity is a hard problem. Instrumenting a platform-specific
browser like Camino by modifying its source code lets us
precisely specify these two parameters. But doing so in a
cross-platform way to better integrate with existing work
practices is much harder. The Firefox programming inter-
face was designed by browser developers who were not es-
pecially concerned with user activity logging. The price to
pay for cross-platform compatibility is a generic framework
that does not necessarily have the right abstractions.

Firefox developers are currently working on a project to
improve access to history and bookmarks7. While their cur-
rent proposal is pretty conservative, we believe that HCI
researchers interested in logging Web activity should seize
this opportunity to sensitize the Mozilla community and the
W3C to their problems and goals. In particular, in addition
to the existing scripting facilities, it seems that observing

6http://navtracer.mozdev.org/
7http://wiki.mozilla.org/Places

user activity would be much easier if the browsers also pro-
vided some generic notification facilities like the ones we
added to Camino. This would also make it easier to write
external applications that somehow need to cooperate with
a browser8.

Although we are mostly interested in using the interaction
logs to enhance the navigation services provided by Web
browsers, we can think of many other reasons for logging
a person’s Web activity. Designers of Web services or even
HTTP servers might learn a lot about their own software
by examining detailed browser interaction logs. The con-
tinuous recording of these logs poses a number of technical
questions. Where and how are they stored? How long are
they kept? Can they be accessed and processed in real-time?
The analysis of the collected data might also pose some in-
teresting Data Mining questions. However, our experience
tells us that interesting ideas about how this data might be
used won’t necessarily come out of the logs themselves. If
you’re looking for inspiration, you don’t need logs. All you
need is a group of users.

5. ACKNOWLEDGMENTS
The Micromégas project is funded by the French ACI

Masses de données. The authors thank John L. and Paul
M. for suggesting the titles used in this paper.

6. REFERENCES
[1] V. Bush. As we may think. Atlantic Monthly,

176(1):101–108, June 1945.
[2] L. D. Catledge and J. E. Pitkow. Characterizing

browsing strategies in the world-wide web. In
Proceedings of the Third International World-Wide
Web conference on Technology, tools and applications,
pages 1065–1073, New York, NY, USA, 1995. Elsevier
North-Holland, Inc.

[3] O. Chapuis. Gestion des fenêtres : enregistrement et
visualisation de l’interaction. In Proceedings of IHM
2005, 17ème conférence francophone sur l’Interaction
Homme-Machine, pages 255–258. ACM Press,
International Conference Proceedings Series,
Septembre 2005.

[4] A. Cockburn, S. Greenberg, S. Jones, B. McKenzie,
and M. Moyle. Improving web page revisitation:
Analysis design and evaluation. IT & Society,
1(3):159–183, 2003.

[5] P. Dourish. Accounting for system behavior:
representation, reflection, and resourceful action. In
Computers and design in context, pages 145–170,
Cambridge, MA, USA, 1997. MIT Press.

[6] A. Dragunov, T. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. Herlocker. Tasktracer: a
desktop environment to support multi-tasking
knowledge workers. In IUI ’05: Proceedings of the 10th
international conference on Intelligent user interfaces,
pages 75–82. ACM Press, 2005.

[7] M. Ringel, E. Cutrell, S. Dumais, and E. Horvitz.
Milestones in Time: The Value of Landmarks in

8Skype, for example, has a simple API that allows external
applications to take control of certain of its functions and
receive high-level notifications (http://share.skype.com/
sites/devzone/)



Retrieving Information from Personal Stores. In
Proceedings of Interact 2003, the 9th IFIP TC13
International Conference on HCI, pages 184–191. IOS
Press, Amsterdam, Sept. 2003.

[8] N. Roussel, J. Fekete, and M. Langet. Vers
l’utilisation de la mémoire épisodique pour la gestion
de données familières. In Proceedings of IHM 2005,
17ème conférence francophone sur l’Interaction
Homme-Machine, pages 247–250. ACM Press,
International Conference Proceedings Series,
Septembre 2005.

[9] R. Salter, B. Shneiderman, B. Bederson, G. Rubloff,
C. Plaisant, and A. Rose, editors. History Keeping in
Computer Applications: a Workshop, Dec. 1999.
http://www.cs.umd.edu/hcil/about/events/history-
workshop/.

[10] A. Tabard. Conception d’un navigateur web spécifique
pour la bio-informatique. Rapport de stage de Master,
Université Pierre et Marie Curie, Paris 6, Septembre
2005. 67 pages.

[11] L. Tauscher and S. Greenberg. How people revisit web
pages: empirical findings and implications for the
design of history systems. International Journal of
Human Computer Studies, 47(1):97–137, 1997.


