
The Hotkey Palette: Flexible Contextual Retrieval of
Chosen Documents and Windows

Jonathan Aceituno
Inria Lille – Nord Europe, Université Lille 1

59650, Villeneuve d’Ascq, France
jonathan.aceituno@inria.fr

Nicolas Roussel
Inria Lille – Nord Europe

59650, Villeneuve d’Ascq, France
nicolas.roussel@inria.fr

ABSTRACT
We present the Hotkey Palette, a quasi-modal interface en-
abling quick retrieval of chosen documents and windows
by defining and triggering keyboard shortcuts either on
the physical keyboard or with an on-screen keyboard. The
Hotkey Palette improves on previous work by providing
flexible contextualization of shortcuts that leverages doc-
ument hierarchies, and by merging document and window
retrieval in a single interface. The paper describes the
design and implementation of the interface and presents
novel use cases for document and window management.

Key Words
on-screen keyboard; document retrieval; interface
customization; window management

ACM Classification Keywords
H.5.2 Information interfaces and presentation (e.g. HCI):
User interfaces - Graphical user interfaces.

INTRODUCTION
Users of Personal Computers interact with a large number
of resources 1 to do their work. To handle their different
tasks, they need their documents to be readily available,
and as the number of activities and documents increase,
systems must offer adequate support for quick retrieval of
these resources.

Document retrieval is primarily done by using a file
browser, but navigation in a folder hierarchy takes a long
time [3]. The desktop, the Windows Start Menu, OS X’s
Dock and similar quick retrieval facilities help decrease
retrieval times by providing customizable areas on which
shortcuts to chosen resources or the resources themselves
can be placed. They are always available and thereby use-
ful to keep things close at hand. But there is no way to
indicate which resource is useful for which task, and the
more things there are, the more time it takes to find the
documents relevant to the task at hand in these places.

1. In this paper, the resources or documents we consider are
local files, folders and applications, but also remote web pages,
and, more generally, anything that can be identified with an uni-
form resource locator (URL) [4].

Quick access to specific resources can also be be provided
by keyboard shortcuts. But the facilities provided to de-
fine these shortcuts are usually hard to use, and remember-
ing them all is difficult. Graphical representations reifying
the shortcuts and supporting direct manipulation can help.
Touch-display keyboards (TDK [5]) would make it possi-
ble to create a keyboard shortcut by dragging a document
to the desired key, for example. But such keyboards are
currently uncommon and such a simple approach does not
scale: one not only needs shortcuts but also ways to organ-
ise them. Existing on-screen keyboards, such as Qliner
hotkeys 2, share the same scaling issues and do not convey
the state of the resource.

The way people configure quick retrieval facilities de-
pends on the context in which resources will be used [17].
Some resources pertain to specific projects while others
are more general, and the users’ workarounds to put re-
sources close to where they might need them, as described
in [17], suggest a lack of support for resource contex-
tualization in current retrieval facilities. When all the
needed documents for a task are found and open, the prob-
lem furthermore shifts from document retrieval to window
management. Unlike document retrieval facilities, many
window managers support the notion of task context by
proposing window grouping [12] or virtual desktops [7].
However, window managers usually do not take the user’s
previous efforts on resource organization into consider-
ation and require additional management that could be
avoided.

Recent systems [2, 16, 8] help solve the contextualiza-
tion problem by explicitly representing the activities used
to organize resources and work around them. Activity-
centric environments help effectively manage access to re-
lated windows and documents using the same notion of
activity. For example, Giornata [16] not only maps win-
dows of different activities to different virtual desktops,
but also associates the files on each desktop to the rele-
vant activity, which is particularly appreciated by users.
Yet activities have blurry boundaries and users have trou-
ble defining and separating them [1]. Moreover, activity-
based approaches do not support finer-grained (linking
a document to another) or coarser-grained (associating a
document to several activities) contextualizations.

In this paper, we present the Hotkey Palette (Figure 1),
a quick retrieval facility that uses hotkeys and makes
them visible and configurable through a quasi-modal [10]
always-available on-screen keyboard. This facility con-
tributes to the state of the art in three ways:

2. http://www.qliner.com/hotkeys

55
55

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
IHM'14, October 28–31, 2014, Villeneuve d'Ascq, France. Copyright 2014
ACM 978-1-4503-2935-4/14/10...$15.00
http://dx.doi.org/10.1145/2670444.2670452

Session 2 : Techniques d'interaction : Commandes et Gestes IHM'14, Villeneuve d'Ascq, France

Figure 1. Hotkey Palette displayed on the bottom of the display, on top of other windows.

— it extends on-screen keyboard interaction by provid-
ing feedback on the state of the linked resources;

— it provides persistent and integrated access to local
windows and files and other online resources;

— it provides flexible control over contextualization by
leveraging existing resource hierarchies.

The rest of this paper is organized as follows. We first
describe the design, the interaction techniques and the im-
plementation of the Hotkey Palette. We then describe dif-
ferent usage patterns and finally conclude with a descrip-
tion of future work.

THE HOTKEY PALETTE
The Hotkey Palette (Figure 1) uses an on-screen keyboard
to visualize and configure persistent shortcuts to access
chosen documents and windows. It appears without de-
lay when the user holds a particular modifier key, so as
to provide immediate visual information to help key se-
lection without hindering expert performance. In our im-
plementation, we chose the Fn key of Apple keyboards,
to avoid interfering with system shortcuts. The Hotkey
Palette allows to access documents and windows by press-
ing associated keys while holding the modifier, and disap-
pears when it is released. In this section, we explain how
contextualization works, describe design of the Hotkey
Palette and the interaction techniques it affords before de-
tailing its current implementation.

Supporting contextualization
The following example describes our approach to the
problem of resource contextualization that was described
in the introduction, using the notions of contextual short-
cuts and hierarchical specialization that we will detail
later on.

Imagine a user, Alice, filing her projects on a local hard
disk using the following hierarchy: the Documents
folder contains two folders, Work and Personal, that
each contain folders for her work and personal projects
respectively. She already has a global hotkey providing
a shortcut to her Documents folder from anywhere us-
ing Fn+D. But she has two different to-do lists, for work
and personal projects, and wants to have them handy. She
creates two contextual shortcuts mapped on Fn+T: one
in her work folder mapping it to her work to-do list, and

the other in her personal folder mapping it to the personal
one. Thanks to hierarchical specialization, pressing Fn+T
while working on a work project (i.e. any document in
Work or its sub-folders) will thus open the work to-do
list, but pressing the same Fn+T while working on a per-
sonal project (i.e. any document in Personal or its sub-
folders) will open the personal to-do list.

One of Alice’s personal projects is to maintain the web
site of the local poker league, and she frequently receives
e-mails from members prompting her to announce tour-
naments on this site. To support her workflow, she has
created a contextual shortcut to the local copy of the web
site’s announcements page associated to her mail applica-
tion, and another to a synchronization script associated to
the entire web site’s local copy (i.e. the enclosing folder).
When she receives an announcement mail, she uses the
former shortcut to quickly access the announcements page
and modify it. From this document, through hierarchical
specialization, she can use the latter to synchronize the
online web site with the modified local copy.

We can see in this example that contextual shortcuts differ
from global ones in that they are associated to a specific
resource (interaction details are discussed later). They are
only available when that resource is the current object of
interest (the one displayed in the active window), thus pro-
viding context-specific access to others. Hierarchical spe-
cialization makes it possible to support the same contex-
tual shortcuts on different related resources by exploiting
their hierarchical relation.

In the above example, several shortcuts are mapped to the
same key. To determine which shortcut is the most rele-
vant to the current resource of interest, we use the follow-
ing relevance order:

— contextual shortcuts pertaining to this object (X),
— contextual shortcuts pertaining to any resource Y

such that Y is an ancestor of X 3 (the closer, the bet-
ter),

— global shortcuts.

3. Every document has a URL which path can be used
to determine the relative location to another, if they live in
the same hierarchy. The folder file:///Documents is
an ancestor of the file file:///Documents/Work/IHM14
Paper.doc for example.

56

56

Session 2 : Techniques d'interaction : Commandes et Gestes IHM'14, Villeneuve d'Ascq, France

Figure 2. Holding Fn+B and pointing to a hyperlink to configure a
shortcut to it on key B.

Hierarchical specialization is the outcome of the above
rule: when a contextual shortcut is associated to a folder,
it will be available by default for all its descendants.

Interaction
In the example above, the user created and triggered short-
cuts. Here, we detail the interaction techniques that sup-
port these functionalities and more advanced ones.

Configuring a hotkey

Pressing Fn and some unused key X creates a global short-
cut mapping Fn+X to the current resource of interest.
Holding Fn+X while clicking on an on-screen resource
creates a global shortcut to it (Figure 2, left). Holding
Fn+Shift+X when clicking instead results in a contextual
shortcut to it associated to the current resource of inter-
est (Figure 2, right). When the user is holding Fn+X or
Fn+Shift+X, the palette disappears to prevent occluding
potential targets, and the current resource of interest and
the resource under the mouse pointer are highlighted.

Triggering a hotkey

To trigger an existing shortcut mapped on a particular key,
e.g. X, the user must hold the Fn modifier and press
X. This brings the associated resource to the foreground.
As an alternative, the user can click on the desired key
when the Hotkey Palette is shown. Like command hotkeys
whose meaning can change according to the active appli-
cation, the resource associated with a key may depend on
the current resource of interest. Since shortcuts are per-
sistent, the triggered one may be associated to a resource
that is not available on-screen anymore. In this case, the
resource is re-opened, if possible. If not, a system beep is
issued.

Visual design

The Hotkey Palette appears on the bottom of the user’s
main display as a semi-transparent on-screen keyboard
sized to fill the whole horizontal space (Figure 1). Only
the keys on the three letter rows of the keyboard 4 are used.
This way, each object associated to a key is displayed in a
square taking up about 1/11 of the horizontal resolution of
the main display (174 pixels on a 1920x1080 display, 93
pixels on a 1024x768 display).

What is displayed on each key of the palette depends on
the resource associated to it. If there is no shortcut, the
key is just displayed with its character as an empty square

4. In a standard QWERTY keyboard, these rows correspond
to characters Q to P, A to ;, and Z to /.

Figure 3. Holding Fn+Shift+P and pointing to a document to
configure a contextual shortcut to it associated to the front window

on key P.

with a white border (Figure 4a). If the key is associated to
a local or remote document (e.g. a web page), an up-to-
date preview is displayed together with its title, filling the
whole square (Figure 4b). If a preview is not available,
its title and/or URL is displayed instead (Figure 4c). If
the key is associated to a window, its aspect ratio is mod-
ified to fit the window’s, and an up-to-date and unscaled
preview of the window centered on its title is displayed
together with the application icon (Figure 4d). We chose
this presentation because we found it easier to distinguish
between similar windows than with scaled-down screen-
shots.

If a window that does not exist anymore can be re-opened,
its preview is yellowed like an old photograph to indicate
that it is not up-to-date (Figure 4e). If the window or re-
source cannot be found anymore, for example because it
has been deleted, its preview is grayed to indicate that ac-
cessing the resource is no longer possible (Figure 4f).

The border of a key indicates the level of contextuality
of its shortcut. A white border is used if the shortcut is
global. A yellow border (Figure 4g) indicates that the
shortcut is associated to the currently active resource. Fi-
nally, a red border (Figure 4h) indicates that it is associ-
ated to one of its hierarchical ancestors.

Graphical interaction

When the Hotkey Palette is visible, advanced graphical
interaction with the shortcuts is possible. They can be
moved around the keyboard using drag-and-drop. Users
can drag a document from any application, hold Fn and
drop it on a key to create a global shortcut (as before,
holding Fn+Shift results in a contextual shortcut related
to the current resource of interest). Dropping a document
on a key containing an application or a script will launch
the script or application using the dropped document as
a parameter. Dragging a shortcut to a document from a
key and dropping it in an external window will have the
same effect as dropping the document itself. The palette
occupies a large part of the screen, but it can be hidden at
any time by releasing the modifier key, even in the course
of a drag-and-drop action. A right click on a key shows a
menu with options to delete the shortcut and, for contex-
tual ones, to bring up the resource defining the context.

Implementation
Our prototype is implemented in Objective-C with Cocoa
and runs under OS X. We used the Quartz Window Ser-
vices API to retrieve window information, and the Acces-

57

57

Session 2 : Techniques d'interaction : Commandes et Gestes IHM'14, Villeneuve d'Ascq, France

a b c d

fe g h
Figure 4. Closeup on the top left keys of the Hotkey Palette above

the active window: (a) empty key; (b) document preview; (c)
document title when the preview is not available; (d) window
preview; (e) yellowed preview of a closed window; (f) grayed

preview of a deleted document; (g) contextual shortcut associated to
the active window (yellow border); (h) contextual shortcut

associated to an ancestor of the document shown in the active
window.

sibility API to inspect objects under the mouse, as well
as to get specific information on the contents of a win-
dow, such as the document it represents. We also used
the bookmarks API to make shortcuts resilient to renamed
or moved documents, ensuring that they can always be
opened, and the previews of local documents and remote
web pages are generated using the Quick Look API and
WebKit, respectively.

To ensure persistence over time, for example to be able
to re-open a window that has long been closed, the pro-
gram saves specific cues about the corresponding resource
and its context whenever a shortcut is created. These cues
are different according to the type of the resource: a sim-
ple URL for remote resources, and a relocation-resilient
bookmark for local resources. For windows, cues include
the application identifier, the window identifier in the ac-
cessibility API, its title, and a relocation-resilient book-
mark for the document it represents, if any. When the pro-
gram loses track of a window, it tries to match the saved
cues to each of the opened ones to find it again. If it can-
not be found, the program tries to locate the resource that
was displayed in the window and to re-open it.

USAGE PATTERNS
In this section, we present some of the usage patterns
that the distinctive features of the Hotkey Palette enable,
namely: reminding the user of something to do, monitor-
ing changes, improving web page revisitation, and cycling
between specific documents or windows.

Reminders and monitors
Shortcuts to resources can be used as reminders of related
actions to execute in the future. These reminders can be
contextual shortcuts, so that the user chooses when to be
reminded of them. For example, Alice may create a con-
textual shortcut associating a photograph of her coworker
Bob to her Work folder so that the next time she works on
a project in this folder and brings up the Hotkey Palette,
she will incidentally be reminded of inviting him to the
next poker tournament.

Because it shows large and up-to-date previews, the
Hotkey Palette can also be used to monitor changes on

documents and web pages. Although the current imple-
mentation does not indicate whether the document has
changed since the last visit, users can still benefit from
the up-to-date preview to check, for example, if Alice has
indeed updated the poker league’s website as expected.

Alternative bookmarks
Web page revisitation is primarily supported in web
browsers by bookmarks and history. The Hotkey Palette
can also act as an alternative bookmark facility, or an ex-
tended version of PageLinker [15]: here, one can not only
associate a web page to another, but contextual links can
also be created between web pages and any local resource,
in both directions. Like with PageLinker, the query part
of the URL is not taken into account for context to avoid
tying shortcuts to a particular web session. Hierarchical
specialization works in this case because web URLs have
paths.

Local cycling
In his description of the memex [6], Vannevar Bush de-
fined associative trails as a chain of documents linked to-
gether, sometimes branching off to side trails. The imag-
ined interactions with these trails involved only hitting a
few keys. While the Hotkey Palette is not designed to
handle trail navigation, this principle can still be useful to
quickly travel along a trail of related resources by creating
contextual shortcuts mapped to the same key and associ-
ating these resources.

Alice could use this approach to create a personnal we-
bring linking her preferred poker news sites, for example.
But she could also use it to cycle between a specific list of
applications. She could use the C key to cycle between all
her communication applications, for example. To do so,
she would first create a global shortcut mapping that key to
the contact list of her instant messaging application. She
would then define a contextual shortcut from this window
to her mail application, using the same key. She would
continue with the websites or applications of her various
social networks. Pressing Fn+C on any of these resources
would then bring up the next one, the global shortcut to
the instant messaging application closing the ring.

DISCUSSION
Extensive use of the Hotkey Palette during its develop-
ment allowed us to refine the design and witness the emer-
gent usage patterns enabled by contextual shortcuts and
hierarchical specialization that are described in the pre-
vious sections. A longitudinal study would bring deeper
understanding of the benefits and drawbacks of these ideas
in document and window management.

The focus of this paper was more on introducing and
demonstrating these concepts, by way of the Palette, than
in validating interface design choices. The latter is re-
quired before deployment to real users but might not be
trivial. For example, choosing Fn as the modifier is con-
venient for our demonstration, but is not adapted for real-
world use because it is located on the bottom left of the
MacBook keyboard, thus making key combinations like
Fn+P difficult to reach with one hand.

58

58

Session 2 : Techniques d'interaction : Commandes et Gestes IHM'14, Villeneuve d'Ascq, France

Nevertheless, contextual shortcuts and hierarchical spe-
cialization being intended to enable quick retrieval, we
strived for a minimal amount of effort in order not to dis-
courage the use of the Hotkey Palette. Further study will
ultimately confirm whether our design was successful in
this regard. It would also help determine how to best in-
corporate the Hotkey Palette into existing tasks and en-
courage its use where beneficial.

CONCLUSION
In this paper, we presented the Hotkey Palette, a quick
retrieval facility based on user-defined shortcuts with the
following distinctive features: quasi-modal interaction
with an on-screen keyboard, persistent and integrated ac-
cess to local windows and files and other online resources,
and flexible contextualization based on resource hierar-
chies. We detailed the peculiarities of our design, the
associated interaction techniques and our current imple-
mentation. Finally, we showed how the technique allows
novel uses in window and document management.

By merging two input modalities, pointing and typing, on
a shared representation, on-screen keyboards may provide
benefits for intermodal learning [14], as syntactically sim-
ilar actions (e.g. pressing a key vs. clicking an on-screen
key) have the same effects. In addition, they provide a spa-
tially stable layout, allowing users to rely on their special
memory, which could lead to faster retrieval times [11,
13]. Both of these hypotheses require further investiga-
tion. In the future, we would also like to investigate how
the design of the Hotkey Palette could be used to improve
learning of application hotkeys, and how it compares to
recent work [9].

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their
helpful feedback and insightful suggestions.

REFERENCES
1. Bardram J. E. Beyond the Desktop Metaphor: Designing Integrated

Digital Work Environments. MIT Press, 2007, ch. From Desktop
Task Management to Ubiquitous Activity-Based Computing,
224–259.

2. Bardram J. E., Bunde-Pedersen J. & Soegaard M. Support for
activity-based computing in a personal computing operating
system. In Proc. CHI ’06, ACM (2006), 211–220.

3. Bergman O., Whittaker S., Sanderson M., Nachmias R. &
Ramamoorthy A. How do we find personal files?: The Effect of
OS, Presentation and Depth on File Navigation. In Proc. CHI ’12,
ACM (2012), 2977–2980.

4. Berners-Lee T., Fielding R. & Masinter L. Uniform resource
identifier (URI): Generic syntax. RFC 3986, 2005.

5. Block F., Gellersen H. & Villar N. Touch-display keyboards:
Transforming keyboards into interactive surfaces. In Proc. CHI ’10,
ACM (2010), 1145–1154.

6. Bush V. As we may think. Atlantic Monthly 176 (1945), 101–108.
7. Henderson Jr. D. A. & Card S. Rooms: The use of multiple virtual

workspaces to reduce space contention in a window-based
graphical user interface. ACM Trans. Graph. 5, 3 (1986), 211–243.

8. Houben S., Vermeulen J., Luyten K. & Coninx K. Co-activity
manager: Integrating activity-based collaboration into the desktop
interface. In Proc. AVI ’12, ACM (2012), 398–401.

9. Malacria S., Bailly G., Harrison J., Cockburn A. & Gutwin C.
Promoting hotkey use through rehearsal with exposehk. In Proc.
CHI ’13 (2013).

10. Raskin J. The Humane Interface: New Directions for Designing
Interactive Systems. ACM Press/Addison-Wesley Publishing Co.,
2000.

11. Robertson G., Czerwinski M., Larson K., Robbins D. C., Thiel D.
& van Dantzich M. Data mountain: Using spatial memory for
document management. In Proc. UIST ’98, ACM (1998), 153–162.

12. Robertson G., Horvitz E., Czerwinski M., Baudisch P., Hutchings
D. R., Meyers B., Robbins D. & Smith G. Scalable fabric: Flexible
task management. In Proc. AVI ’04, ACM (2004), 85–89.

13. Scarr J., Cockburn A., Gutwin C. & Bunt A. Improving command
selection with commandmaps. In Proc. CHI ’12, ACM (2012),
257–266.

14. Scarr J., Cockburn A., Gutwin C. & Quinn P. Dips and ceilings:
Understanding and supporting transitions to expertise in user
interfaces. In Proc. CHI ’11, ACM (2011), 2741–2750.

15. Tabard A., Mackay W., Roussel N. & Letondal C. Pagelinker:
Integrating contextual bookmarks within a browser. In Proc. CHI
’07, ACM (2007), 337–346.

16. Voida S., Mynatt E. D. & Edwards W. K. Re-framing the desktop
interface around the activities of knowledge work. In Proc. UIST
’08, ACM (2008), 211–220.

17. Zacchi A. & Shipman F. Personal environment management. In
Research and Advanced Technology for Digital Libraries,
L. Kovács, N. Fuhr, and C. Meghini, Eds., vol. 4675 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2007,
345–356.

59

59

Session 2 : Techniques d'interaction : Commandes et Gestes IHM'14, Villeneuve d'Ascq, France

