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Abstract
Does the stimulation used during the training on an SSVEP-based BCI have to be similar from the one of

the end use ? We recorded 6-channels EEG data from 12 subjects in various conditions of distance between
targets, and of difference in color between targets. Our analysis revealed that the stimulation configuration used
for training which leads to the best classification accuracy is not always the one which is closest to the end use
configuration. We found that the distance between targets during training is of little influence if the end use
targets are close to each other, but that training at far distance can lead to a better accuracy for far distance end
use (p<0.01). Additionally, an interaction effect is observed between training and testing color (p<0.001) : while
training with monochrome targets leads to good performance only when the test context involves monochrome
targets as well, a classifier trained on colored targets can be efficient both for colored and monochrome targets.
In a nutshell, in the context of SSVEP-based BCI, training using distant targets of different colors seems to lead
to the best and more robust performance in all end use contexts.
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1 Introduction

In a great number of BCI systems, a stimulation is pre-
sented to the user in order to observe and classify his
cerebral response. This is notably the case for P300 or
SSVEP-based BCI, which are sometimes called "exoge-
nous" BCI [19], relying on external flashing or flicker-
ing stimuli. In such BCI setups, the properties of the
stimulation must be carefully considered. In the case
of SSVEP for example, one must choose: the size of
the flickering targets, the distance between them, their
flickering frequencies, and even their color or differ-
ence in color (using different colors for different tar-
gets). Target size and frequencies, as well as inter-
target distance, were found to strongly influence the
resulting classification accuracy of the BCI [5, 20, 23].

In recent years, signal processing methods for SSVEP-
based BCIs that do not require a calibration phase
have been proposed, and were shown to have a
good accuracy, compared to the existing alternatives
[9, 24]. However, an interest toward the capacity of
calibration-based methods to take into account subject
specificity was maintained, and several recent studies
still use calibration-based methods [22, 15, 27].

In some cases, the characteristics of the stimulation
vary between the training and the testing phases.
SSVEP-based BCIs are sometimes trained in stimu-
lation conditions which differ from the ones on the
online use. As an example, in [16], only one flicker-
ing target at a time is presented to the user during

the training phase, while two different targets are pre-
sented during the test phase of the experiment. On top
of that, the targets used for training are much larger
than the online ones. In other cases, the properties
of the stimulation are kept rigorously identical dur-
ing both phases. For example, in [18], the flickering
targets displayed during the training phase are iden-
tical to the targets used during the online BCI-based
video-game. But very little is actually known regard-
ing the potential influence of a difference in stimula-
tion conditions between training and end use of ex-
ogenous BCI. In other words, is it preferable to train a
BCI classifier in a stimulation context which is close to
the end use context, i.e, the one in which the classifier
will be used later?

It has already been observed that some SSVEP stim-
ulation conditions, (thereafter referred to as "easy con-
dition") could lead to a better classification accuracy
[5, 20] (such as a larger distance between targets),
whereas other stimulation characteristics (thereafter
referred to as "hard condition") could lead to worse per-
formance (resp. close distance). Therefore, is it prefer-
able to train the BCI classifier in the easy condition or
in the hard condition? In other words, is it better to
"learn the easy way" or to "learn the hard way"? Lim-
iting noise in the data with the easy condition could re-
sult in a better classifier. But on the other side, train-
ing the system in the hard condition could result in a
more robust classifier, as "he who can do more, can do
less". Besides, in the Machine Learning community, it
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is generally considered that the training has to be done
in conditions as close as possible to the end use con-
text (from now on called "end use condition"). One last
possibility is that mixing different conditions during
the training, with both hard condition and easy condi-
tion trials, would result in a more robust classifier.

Thus, in this study, we explore which stimulation con-
dition enables to train the most robust classifier in an
SSVEP context. To sum up, four strategies for the op-
timal training conditions are possible: the easy con-
dition, the hard condition, the end use condition, and
the mix condition. We focused on two parameters of
SSVEP visual stimulation : distance between targets,
and difference in color between targets. Distance be-
tween targets is known to influence the accuracy of
classification [20]. With a short distance between tar-
gets, SSVEP responses for several frequencies are ob-
servable in cerebral activity, thus making classification
harder [20]. Visual selective attention is known to be
affected by color, and this effect can be observed in the
measurable cerebral activity [13]. Thus, it is plausible
that using targets of different colors might have an ef-
fect on SSVEP response.

2 Related work

SSVEP detection is largely used for BCI applications
which allow one user to select a target in a defined set
[16, 17]. SSVEP requires an external visual stimula-
tion of the user. Different stimuli have been used for
SSVEP BCI-based applications, as reviewed by [28].
This meta-analysis showed that the most frequently
used stimuli could be divided in three categories. The
first one is graphic alternation, in which a simple form
(circle, rectangles) is successively displayed and hid-
den at the preferred frequency. The second one is
flickering checkerboards, which can be seen as a spe-
cific case of the first category, with checkerboard as the
shape of the pattern. Finally, the third one consists in
using light devices such as LEDs, allowing to control
precisely the luminosity and the frequency of stimu-
lation, but requiring specific hardware. LED-based
stimulation allows for higher bit rate, higher stimu-
lation frequencies, and more variability in the range
of frequencies, while standard screens are limited by
their refresh rate [28]. On average, graphic alternation
on the screen results in a higher bit rate than flick-
ering checkerboards. The same review also revealed
that stimulation frequencies in the low (1-12 Hz) and
medium (12-30 Hz) frequency band have been more
often applied than those in the high frequency band
(30-60 Hz). This tendency is probably due to both
the limitations in frequency of computer screens, and
the limited SSVEP response of the human visual cor-
tex to such frequencies. Other studies [12, 21] found
that frequencies below 10 Hz and above 25 Hz per-
form significantly less well than intermediary ones.

The authors concluded that : "improvement to stim-
uli can enhance SSVEP SNR (signal-to-noise ratio), sim-
plify signal processing, enable the use of more targets,
prevent loss of attention, and allow for BCI indepen-
dent BCI operation".

However, little is known about the influence of stim-
ulus color for SSVEP. Cao et al.[5] tried different col-
ors flickering on a black background. They observed
that white stimuli lead to the highest performance, fol-
lowed by gray, red, green and blue. These colors are
traditionally used for SSVEP experiments, and corre-
spond to the RGB system basic colors, with the ad-
dition of a middle gray. Since then, other studies
have analyzed the influence of color on SSVEP BCIs
[1, 25, 26, 7]. Yet, existing studies consider that at
any given time, all SSVEP targets share the same color
both in training and in end use conditions. In contrast,
in this paper, we introduce the usage of different col-
ors for simultaneous SSVEP targets, each target being
assigned a different color.

Other parameters, such as frequency, spatial size,
number of simultaneously displayed stimuli, and
their spatial proximity have been studied by Kian et
al.[20]. They concluded that optimal performance is
attained when targets are distant of at least 0.087 rad
apart, with a size that subtends 0.035 rad of visual an-
gle. Additionally, other studies [12, 21] found that low
(below 10Hz) and high frequencies (above 25 Hz) per-
form significantly less well than intermediary ones.

In this paper, we study the effect of distance and dif-
ference in color between targets, not only for the end
use, but also during the training phase, and the link
between optimal training conditions and end use con-
ditions. In particular, we focus on the influence of dis-
tance, and of difference in color between targets.

3 Materials and method

In order to explore the effect of distance and difference
in color between targets, we registered SSVEP data in
different conditions, considering two factors. The first
factor is the distance between targets, which can take
three different values. The second factor is the differ-
ence in color between targets. In the "monochrome"
condition, targets are all black with a white back-
ground, while in the "color" condition, they each have
a different color, with the same white background. For
each of the conditions of distance and color, one data
set was recorded. This data set was partitioned into 6
folds. For each fold, a classifier was trained on 5/6th

of the original data set. The resulting classifier was
then tested on the last 6th, and on the data from all
the other conditions. For each condition, the rate of
correct classification is measured by averaging over
the folds. We could then study the variations of ac-
curacy of a classifier, depending on both the training
conditions and the testing conditions.

2/ 10



Figure 1: Different distances between targets (three
possible distances : 2r, 4r, and 8r).

Participants: 12 healthy participants volunteered to
participate in the study : 10 men and 2 women,
aged between 23 and 37 years old (average 28 years
old, standard deviation 3.9 years). All of them hap-
pened to be right-handed, and had a normal or cor-
rected vision. Before the experiment, each partici-
pant signed a written consent form, and filled a ques-
tionnaire collecting statistics about gender, dominant
hand, age and sight. One participant reported not
having followed the instructions. Thus, another par-
ticipant passed the experiment to compensate for the
discarded data.

Data acquisition: EEG data were recorded using
6 passive electrodes out of a 16-channel system
(g.USBAmp, g.tec company, Austria), with a sampling
rate of 512 Hz. Electrodes were placed according to
the extended 10-20 system [14], concentrated on the
occipital lobe, in order to focus on the visual cortical
areas. Electrodes were positioned on CPz, POz, Oz,
Iz, O1 and O2. A reference electrode was located on
the right ear, and an additional ground electrode was
located on AFz. Channels were amplified and band-
pass filtered between 2 and 60Hz. A notch filter was
applied to exclude frequencies between 48 and 52Hz,
corresponding to the power supply frequency band.
Electrode impedance was checked to be below 1 kilo-
ohm to ensure signal quality.

Design: Inter-stimuli distances and color conditions
varied across the experiment, with 3 levels of distance
(See Figure 2), and 2 levels of color. All the other char-
acteristics of the stimuli were kept constant.

On a 60 Hz screen, it is possible to display frequen-
cies at 8.57 Hz or below, and at 10, 12, 15, 20, 30 or
60 Hz. Frequencies lower than 10 Hz and above 25 Hz
were excluded from this study because of their weaker

Figure 2: Targets shape, and their respective colors in
the colored condition: left target is green, right target
is blue, and upper target is orange.

SSVEP response [12, 21, 28]. Finally, SSVEP brain re-
sponse is observable at the harmonics of the stimula-
tion frequencies. Thus, a 20 Hz frequency could in-
terfere with the detection of a 10 Hz one. We chose
to use 3 targets flickering respectively at 10, 12 and 15
Hz. The screen vertical synchronization was used to
control each frequency.

In order to reach an optimal detection, stimuli should
be at least 0.035 rad wide [20]. On top of that, a large
inter-target distance is preferable, until 0.087 rad [20].
The targets had to be large enough to allow a good
target detection, but small enough to be displayed
close to each other without overlapping. We chose to
use targets with a diameter of 0.05 rad of visual an-
gle. Considering that the participants would be sit-
ting between 50 and 70 cm of the screen, 0.05 rad of
visual angle corresponds to 3.1 cm on the screen. We
used a DELL™Ultrasharp™2007FP 51 cm screen (20.1
inches), with a resolution of 1280 × 1024 pixels, and
a refresh rate of 60 Hz, resulting in a diameter of 58
pixels (3.1 cm) for each stimulus.

The distance between targets varied during the exper-
iment, with 3 possible distances: In the "close" condi-
tion of distance, the targets were touching each other,
without overlapping (3.1 cm between the centers of 2
stimuli, exactly 58 pixels). In the "medium" condition
of distance, the targets were twice as far, at 6.3 cm of
each other. Finally, in the "far" condition, the distance
is again doubled, reaching 12.6 cm between the cen-
ters of each target (See Figure 2).

In the "monochrome" condition, the stimuli were flick-
ering between pure black and white (RGB: 0, 0, 0 and
RGB: 255, 255, 255), one at 10 Hz, one at 12 Hz, and the
last one at 15 Hz. In the "colored" condition, the fre-
quencies of the stimuli were the same, but they were
each associated with a specific color, and flickered be-
tween white and this color. In order to exhibit a pos-
sible effect of a difference in color between targets,
colors were chosen to be as different as possible from
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each other, in the sense of attention selection. The cho-
sen colors should also present a good contrast with the
white background (as luminosity contrast is known to
be essential to SSVEP responses [6]), that is, a similar
level of gray. The GeoVista center of Penn State Uni-
versity proposed several graphic palettes specially de-
signed for attention differentiation [4]. Among those
palettes, the final choice of colors was the one present-
ing the highest level of gray, and guaranteed to be
colorblind-friendly [10]. It was composed of a green
(RGB: 27, 158, 119), an orange (RGB: 217, 95, 2), and
a purple (RGB: 117, 112, 179) (see Figure 1). Some in-
teractions between color and frequency of stimulation
have been discovered [5, 23], but they are not well
understood yet. In this paper, we chose not to fo-
cus on those aspects, in order to maintain a low num-
ber of factors, and thus keep a good statistical power.
Therefore, we associated each frequency to a color,
and kept it constant. This association was chosen in
order to get the strongest SSVEP response, according
to the present knowledge. The SSVEP response to a
red stimulation is stronger at 12 Hz [5, 23]. Thus, we
associated the 12 Hz target with the color with the
strongest red component (orange). Others colors have
not been shown to have such a strong dependency to-
ward the frequency of stimulation for SSVEP response
[23]. The green was associated with the 10 Hz target,
and the purple with the 15 Hz one.

Experimental procedure: Participants were seated
in a comfortable chair, in front of a computer screen,
on which flickering stimuli were displayed, while
their cerebral activity was recorded. The experi-
ment was divided into eight blocks, separated by one
minute breaks.

Before each trial, instructions, telling the participants
which of the 3 targets they had to focus on, were dis-
played on screen for 3 seconds. The targets then flick-
ered during 7 seconds, and a simulated feedback on
the selected target was then displayed.

In order to keep the attention of the participants, it
is important to give them a feedback indicating what
target has been recognized [17]. However, a train-
ing phase for the feedback could induce a bias to-
ward the condition of feedback training. In order to
avoid an augmentation of the number of conditions,
a fake feedback was used. It has been shown that
even a fake feedback can help to keep the attention
of a participant during BCI tasks [11]. Thus, after each
trial, a fake feedback was displayed during 2 seconds,
giving a positive response with a realistic accuracy
(80%). This level of accuracy has been reached in pre-
experiments, as well as in previous studies on SSVEP
[2, 17]. The users were not aware that the feedback
was simulated.

Each block of acquisition contained 18 trials, and
lasted 3 minutes and 36 seconds. The whole ex-
periment was composed of 8 blocks. Between each

block, participants were given at least a one minute
break that could be extended upon participants will.
All participants did all of the blocks (balanced de-
sign), with randomized order of conditions. The dis-
tance between the targets and the colors of the targets
changed across blocks. Finally, the participants were
given a post-experiment questionnaire. In particular,
this questionnaire allowed us to check if the partici-
pants trusted the feedback. The total duration of the
experiment was less than 45 minutes.

Each block was characterized by the distance between
the targets D, and the color of the targets C. There
were 3 distance levels: close (Dc), medium (Dm) and
far (Df), and 2 color levels : monochrome (Cm) and
colored targets (Cc). Each of the 6 resulting joint con-
ditions of D/C corresponded to one block. On top
of these 6 blocks, 2 additional blocks mixed all condi-
tions with equal representation. The order of the final
8 blocks was randomized for each participant. In ev-
ery block, each frequency was targeted 6 times. Each
block was divided into 6 sub-blocks in which every
frequency was targeted once, in order to avoid any
bias in the frequency distribution across the block. In
the blocks that mixed the conditions, each combina-
tion of target, color and distance was presented ex-
actly one time.

In summary, the experimental design was 12 partici-
pants × 8 blocks (3 distances × 2 colors + 2 mixed) ×
18 trials = 1,728 total trials.

4 Signal processing

Most SSVEP studies use similar steps of filtering, fea-
ture extraction, and classification. The signal process-
ing chain used for this study followed classical meth-
ods for each step [22].

Feature extraction: A measure of the spectral den-
sity in each frequency of interest is computed as in
[18]. Each channel was processed through a 0.5 Hz-
wide band-pass filter at the 3 fundamental frequen-
cies of stimulation (10, 12 and 15 Hz), and their first
harmonic (respectively 20, 24 and 30 Hz). For each
frequency of stimulation, the six channels are pro-
cessed through two fourth order common spatial pat-
tern (CSP) filters, in order to optimize the detection of
this specific frequency [18]. The resulting filtered sig-
nals are then decomposed in 0.5 seconds moving win-
dows, with 0.1 seconds moving steps. Let S(f) be the
signal filtered around frequency f. The energy spec-
tral density is computed as the average of S2(f) over
the time window, and a natural logarithm of this esti-
mated density is computed and used as feature for the
following classification algorithm.
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Classification: A three-class LDA classifier was
trained, combining 3 two-class LDA classifiers, each
of them discriminating one class versus all the oth-
ers. For each class i of stimulation (defined by its
frequency), a two-class LDA classifier is learned, dis-
criminating signals of class i against all the others.
This classifier gives di an oriented distance to the hy-
perplane of separation. When used with two classes,
such a classifier decides for class i if 0 ≤ di. In order
to combine several two-class LDA classifier to classify
between more classes, the chosen class is the one max-
imizing di −

∑
j 6=i dj. The resulting 3-class classifier

gives a decision every 0.1 seconds, and thus has a rel-
atively low recognition rate ( 71.8% on average dur-
ing this experiment), since it makes a decision using
only 0.5 seconds of signal. In order to get one single
classification for each 7-seconds trials, a voting step
could be added, by deciding for the class the most
consistently detected over the 7 seconds. Such a vot-
ing system allows reaching recognition rates close to
100% on 7-seconds trial. The resulting accuracies are
strongly discrete, since the dataset were only 18 trials
long. Thus, to avoid discretisation of measurements,
the following performance analysis uses the accuracy
measured on 0.5-seconds windows.

5 Data analysis and results

The following analysis focuses on the effect of the dif-
ference in color and distance of the SSVEP stimuli on
the classification performance. For each pair of blocks
(characterized by its level of Distance and Color), we
will refer to it as training block when its data is used
to train the classifier and as test block when it is used
to test the classifier. The matrix of performance P
provides for each cell (x,y) (row,column) the average
classification rate for the classifier trained using the x
training block, and tested on the y test block (See Table
1). The accuracy for each cell has been computed by
6-fold trial-based cross-validation. For each block, the
dataset is divided into 6 folds. The folding does not
separate data from the same trial, in order to avoid
overlapping in samples. It also ensures that classes
are equally represented between folds. For each fold,
5/6th of the dataset is used to train a classifier. This
classifier is tested on the last 6th (to get accuracy when
y = x), and on the dataset from the other conditions
(to get accuracy when y 6= x). Accuracies are then av-
eraged over the folds. This method allows to compute
the diagonal of P, without introducing a bias due to
the length of the training set, and without recording
each condition twice, which would have made the ex-
periment twice as long, and would not have been ac-
ceptable for the participants, especially since SSVEP
stimulation causes a strong visual fatigue.

Before the analysis, let us first introduce the nota-
tion used. Each block was characterized by the dis-
tance D between targets (close (Dc), medium (Dm)

and far (Df)) and their color C (monochrome (Cm)
and colored targets (Cc)). We write each condition
as “Distance condition/Color condition”. For exam-
ple,D/Cc represents the set of all blocks with colored
targets, while Dm/Cc only represents the block with
medium distance and colored targets. Mixed blocks
were noted as Mix1 and Mix2 (Mix represents both
blocks).

Regarding the overall performance rates, classifica-
tion accuracy was 71.8%. As said in the previous sec-
tion, this accuracy is measured on 0.5 seconds sliding
windows for each trial (7 seconds).

5.1 Single conditions analysis

We performed a four-way ANOVA with a full facto-
rial design considering the training (x = {D/C}) and
testing (y = {D/C}) conditions. When needed, Tukey
post-hoc pairwise-tests were performed (α=0.95). As
the Mix condition can not be attributed a level of dis-
tance or color, it was considered in a second analysis.

The four-way ANOVA only showed a significant main
effect on test distance (F(2, 22)=5.3 ;p<0.05 ;η2p=0.325).
Post-hoc tests showed that y = {Dc/C} resulted in a
significantly lower accuracy rate (x=69.8; σ=14.7) than
y = {Dm/C} (x=72.5; σ=14.3).

Regarding higher interaction effects, there was a sig-
nificant two-way interaction effect between training
and testing distance conditions
(F(4, 44)=5.9 ;p<0.01 ;η2p=0.349), as well as between
training and testing color conditions (F(1, 11)=26.63 ;
p<0.001 ;η2p=0.71) (see Figure 3). The interaction be-
tween training and testing distance conditions can
be interpreted as that training with (x = {Dc/C})
provides similar performances for all (y = {D/C})
while training with (x = {Dm/C}) and (x = {Df/C})
results in similar performances for (y = {Dc/C})
but increased performances with (y = {Dm/C}) and
(y = {Df/C}). Regarding training and testing color,
post-hoc tests showed that training the classifier with
monochrome targets (x = {D/Cm}) resulted in a sig-
nificantly lower classification accuracy for colored tar-
gets (y = {D/Cc}). On average, classifiers trained
on monochrome targets presented an accuracy 8.6%
lower when tested on colored targets.

We also analyzed the effect of training and testing
the classifier with the same conditions (y = x) and
the opposite case (y 6= x). We performed a two-way
ANOVA dataset ((y = x), (y 6= x)) and training con-
dition vs accuracy. The results show that the accu-
racy of a classifier trained in the same condition as
the end use (y = x) have a significantly better av-
erage accuracy than the ones which are not (y 6= x)
(F(1, 11)=43.50 ;p<0.001 ;η2p=0.79). However, this ef-
fect is observed only when comparing the diagonal
with all the training options at once, and does not re-
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condition Dc/Cm Dm/Cm Df/Cm Dc/Cc Dm/Cc Df/Cc Mix1 Mix2

Dc/Cm 76.0 73.7 73.3 61.7 66.1 63.3 71.1 68.3
Dm/Cm 72.1 76.7 75.1 64.3 68.4 66.7 74.1 68.3
Df/Cm 71.9 76.8 75.8 66.1 69.0 68.4 73.5 70.6
Dc/Cc 70.7 72.2 73.8 70.6 70.4 70.7 74.4 70.9
Dm/Cc 70.6 75.4 74.9 69.6 74.6 71.7 76.4 72.7
Df/Cc 73.0 74.2 75.0 71.2 73.1 74.0 75.2 72.1
Mix1 72.9 76.3 75.2 68.5 71.3 69.5 76.3 71.7
Mix2 72.8 75.5 75.7 68.0 70.9 69.4 74.7 71.4

Table 1: Performance matrix averaged over the 12 participants. Dc, Dm and Df are respectively the close,
medium, and far distance levels. Cm and Cc are the monochrome and colored levels of color. Each cell
contains the accuracy obtained with a classifier trained in the condition specified by the line, tested in the
condition specified by the column.

main significant when focusing on more specific con-
ditions.

In particular, when comparing with the classifier
trained on colored targets (x = D/Cc), we found no
significant differences in accuracy. These results sug-
gest that training a classifier in the end use condition
gives good results, but that similar results could be
obtained with another training condition (here with a
classifier trained on colored targets at medium or far
distance) and, as it will be presented later in section
6, such other classifier can be used for a wide range
of end use conditions, meaning without the need for
re-computing a classifier after every change in the end
use condition.

5.2 Mix condition analysis

We tested the quality of the classifier when trained
with the Mix condition x={Mix} and tested against the
different combinations of color and distance y={D/C}.

The two-way ANOVA test distance and test color vs
accuracy showed a main effect on distance (F(2, 22)=
6.19 ;p<0.01 ;η2p=0.36). Post-hoc tests showed that
the mean accuracy of Dc (x=70.55;σ=16.4) was sig-
nificantly smaller than for Dm (x=73.5;σ=15.22). We
also observed a tendency on test color (F(1, 11)=5.9 ;
p=0.08 ; η2p=0.249) which suggests that y={D/Cm}

would result in higher classification rates.

In addition, we tested the accuracy of the classifier
when training it with the different "single" condi-
tions x={D/C} and tested against the Mix conditions
y={Mix}. The two-way ANOVA training distance and
training color vs accuracy showed a strong tendency
on training color (F(1, 11)=4.62 ;p=0.055 ;η2p=0.296)
and a tendency on training distance (F(2, 22)=
2.88 ;p=0.078 ;η2p=0.207). This results are in line with
the results of the single condition analysis as the ten-
dencies suggest that (x = {D/Cc}) would result in
higher classification rates than (x = {D/Cm}), and
(x = {Dc/C}) would result in lower classification rates
than (x = {Dm/C}) and (x = {Df/C}).
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Figure 3: Classifier accuracy (CI 95%) depending
on the training and testing color. Left: classi-
fiers trained with colored targets tested on colored
and monochrome targets. Right: classifiers trained
with monochrome targets tested on colored and
monochrome targets.

In short, in order to get a general-purpose SSVEP clas-
sifier able to adapt to various conditions, training a
classifier on distant targets is more efficient than train-
ing them on short distance. This effect could be ex-
plained by the noise generated by the interference be-
tween targets. We also saw that training a classifier
on colored targets seems to be more efficient, when
the end use presents colored targets, and as efficient
when the end use presents monochrome targets.

5.3 Subjective evaluation

Participants filled a questionnaire aiming at evaluat-
ing perceptual differences between the conditions of
stimulation.

Concerning the detection of the fake feedback, a 7-
point Likert-scale was used to rate the precision of the
target detection and the control of the target detection.
For all participants, with all conditions, the feedback
had 80% accuracy. The precision of the target detec-
tion was rated 5.8 on average (SD = 0.4), and control
of the detection was rated 5.3 (SD = 1.2). This high
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level of control of the detection indicates that most
subjects did not suspect the fake feedback. One partic-
ipant rated 5 for the detection and 2 for the control. In
addition, this participant stated that "the errors are sur-
prising: sometimes no mistake while I had the impression
of having a bad focus, and when there is a mistake, the de-
tected target is not the one that was distracting me". This
participant could have discovered the fake feedback.
However, his data resulted in a good accuracy (71%
of correct classification on average), without any drop
of performance on specific blocks, as it should be the
case for someone trying to not follow the instruction.
The other participants all rated control of the detection
at 5 or higher.

Concerning subjective preference between color and
monochrome targets, opinions differs across the sub-
ject. They were invited to report any impression with
their own words. Some participants preferred the col-
ored targets, while others preferred the monochrome
ones. For example, one participant stated : "About
black and white : I don’t know if the precision is actually
better, but it is undeniably more comfortable to use", while
another one said the opposite : "Overall, the flickering
in black and white targets seemed more annoying to bear
with". Most participants did not comment about the
distance between targets. This suggests that the dis-
tance between targets did not have a meaningful in-
fluence on user comfort.

To sum up with, difference in color between targets
seems to have contrasted effects depending on the
participants, while the distance between targets has
little influence on comfort. This observation should
encourage future applications to use distant targets
for both training phase and online mode whenever
it is possible, since the resulting classification rate is
higher. As for color, considering that using colored
target during end use results in a similar classification
rate, and that the comfort related to color seems to be
participant-dependent, the choice of using colored or
monochrome targets during the end use could be left
to the user.

5.4 Results summary

We observed an effect of the distance between tar-
gets for the testing condition. When SSVEP targets
are closer to each other, they are harder to classify.
This result is consistent with previous research [20].
Additionally, an interaction effect was observed be-
tween training distance condition and test distance
condition. It can be interpreted as follows: A classifier
trained at close distance is equally accurate for targets
at close or far distance, while a classifier trained with
targets at far distance is more accurate for an end use
at far distance, and equally accurate at close distance.
In short, the distance condition seems to follow a rule
of "learning the easy way".

The color condition behaves quite differently. No sig-
nificant effect of color on accuracy was found neither
during the training phase, nor during the end use.
However, an interaction effect was observed between
the training color condition and the testing color con-
dition. It can be interpreted as follows: a classifier
trained with monochrome targets is efficient for an
end use with monochrome targets, but is less accurate
in the presence of colored targets. On the opposite, a
classifier trained with targets of different colors is ac-
curate during the end use for both monochrome and
colored targets. In short, the color condition seems to
follow a rule of "learning the hard way".

The main lesson, here, is that a classifier trained in the
right conditions (medium or far distance, and differ-
ent colors), can be used with a broader range of tar-
gets without any loss of accuracy compared to a spe-
cialized classifier trained on the exact same conditions
as the end use.

6 Discussion

In machine learning, it is generally considered that
it is preferable to train the classifier in conditions as
close as possible to the end use ones. Since all pa-
rameters cannot be controlled, this general principle
is most of the time restricted to the parameters con-
sidered to be the most important ones. For example,
in an SSVEP context, the frequency of flickering is al-
ways conserved between training and end use. The
core principle of SSVEP requires keeping such param-
eter constant. In addition, the targets color is generally
conserved, as well as the distance between targets and
the shape of those targets.

The same reasoning leads to mixing conditions during
the training when the end use requires various con-
ditions. However, our experiment suggests that this
approach is not optimal, and that some conditions are
more favorable for a robust training, even when ex-
tended to less favorable conditions.

We observed an interaction effect on the accuracy ob-
tained depending on the color condition. In order to
get a good accuracy when the end use context contains
monochrome targets, both conditions of color during
the training lead to similar performance. However,
if the end context contains colored targets, training
the classifier on monochrome targets becomes less ef-
ficient. Thus, if the end context is uncertain, we would
recommend using targets of different colors for the
training phase.

This effect can be explained, considering that adding
color to the stimulation is equivalent to adding a noise
to the data that does not change the class of each trial.
Since the color does not change the frequency of stim-
ulation on which the detection is based, the class ac-
tually stays unchanged. Thus, color might be a rele-
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vant class invariant. Previous work in machine learn-
ing showed that adding a relevant noise to training
data can improve the generalization power of a clas-
sifier [3, 8]. Understanding precisely how the neural
structure of visual areas is related to this change when
using targets of different colors still requires investi-
gation. In particular, it would be interesting to ex-
plore whether the effects discovered in this study can
be generalized to different sets and configurations of
colors and frequencies of stimulation.

We observed an effect of the distance between targets
during the end use. Targets separated by larger dis-
tances are easier to distinguish than targets close to
each other. This is consistent with previous studies
[20] that showed that when several targets flicker at
different frequencies in the visual field of the user,
all frequencies are represented in the cerebral activ-
ity, and compete for representation. The attention
of the user then selects one frequency to improve its
representation. Despite this attention selection, dis-
crimination between close targets is still harder to
achieve. Distant targets influence less the represen-
tation of the desired target, since the visual receptive
cells are mainly condensed in the center of the visual
field. Thus, for the distance parameter, the easy condi-
tion is when the targets are far from each other, while
the hard condition corresponds to the closest distance.

We observed an interaction effect between training
and testing distance conditions. Overall, an increase
of the distance between targets during the test con-
dition lead to an improved classification. However,
this improved performance is less visible when the
classifier is trained with closer targets. In contrast, a
classifier trained with further away targets presents
a stronger classification improvement between closer
and further away targets. In short, it seems that train-
ing on the easy condition can be better than training
a classifier on the hard condition. Concerning inter-
stimulus distance, learning the easy way is more ef-
ficient than learning the hard way.

Let us now consider the end use condition: from our
observations, in some cases, learning on conditions
as close as possible to the end use condition is effi-
cient. However, it does not seem to be always the
case. For example, when the end use targets are
close to each other, classifiers trained with targets at
far distances are as efficient as the ones trained at
short distances, with the additional advantage of be-
ing better for far distance targets. Similarly, classifiers
trained with colored targets are as good as the ones
trained on monochrome targets when it comes to clas-
sify monochrome targets, while classifiers trained on
monochrome targets are less accurate to classify col-
ored targets.

The comparison to the Mix condition reveals that the
mix condition is not more efficient than the far condition,
which corresponds to the easy condition. To sum up

with, the distance parameter follows the rule: learning
the easy way.

Taken together, our results show that training a clas-
sifier in the end use condition is a relatively efficient
approach. However, it is possible to choose the train-
ing conditions in order to ensure a robust accuracy for
all end use conditions. Namely, training a classifier
with targets at medium or far distance, and of dif-
ferent colors, leads to an accuracy similar to that of
a training in the end use condition. In other words, by
training a classifier in optimal conditions, the need for
re-calibration when the end use conditions change is
avoided. The classifier can be trained once and for all.

7 Conclusion

Similar conditions during the training of a classifier
and its end use is not always better. Our findings
show that it is possible to efficiently train a classifier
on a specific condition and to generalize its use to dif-
ferent contexts. In some cases, it can even result in
a better classification rate than when the classifier is
trained in the end use context. In our SSVEP experi-
ment, we found that distant targets are easier to dis-
tinguish, and are preferable as training conditions as
well. Concerning the difference in color between tar-
gets, we found that targets of different colors are not
significantly more difficult to distinguish. Last, we ob-
served that using different colors for targets during
the training phase results is a classifier efficient in a
wider range of end use contexts.

Based on these observations, and when the end SSVEP
application allows it, we advise to use distant targets
with different colors during the training phase, and
distant targets for the end use, while the end use color
does not matter.

Future work could explore in more details the effect
of conditions during the training and the end use.
For BCI based on externally evoked potential, such as
SSVEP and P300, on top of inter-target distance and
difference in color, conditions such as raw color, fre-
quency, or shape of the target could be relevant. Oth-
ers parameters are relevant for internally evoked po-
tential as well. A particular attention could be given
to the instructions given to the users, or the feedback
characteristics.
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